

Kiama Municipal Council

Annual Surface and Groundwater Monitoring Report Gerroa Waste Disposal Depot

Report E2W-025 R001

3 March 2014

Prepared by: **D.Parisotto**(Managing Director) BAppSc- Geology (Hons);MAppSc- Groundwater Phone: (02) 4234 0829 Fax: (02) 4236 1824 175 Fern Street, Gerringong,NSW,Australia,2533

This document may only be used for the purpose for which is was commissioned and in accordance with the Terms of Engagement for the commission. This document should not be used or copied without written permission from Earth2Water Pty Ltd.

175 Fern Street Gerringong NSW 2534 Phone: (02) 4234 0829 Fax: (02) 4236 1824

Client: Kiama Municipal Council

Project: Annual Surface and Groundwater Monitoring Report Gerroa Waste Disposal Depot

> Prepared for: Paul Czulowski Kiama Municipal Council P.O. Box 75, Kiama, NSW, 2533.

Report: 3 March 2014 Reference: E2W-025 Gerroa DR001 (V1)

Water Sampling & Laboratory Analyses Completed By: ALS Environmental Pty Ltd

Authorised by: Earth2Water Pty Ltd

Panist.

Dino Parisotto - Director BAppSc Geology (Hons); MAppSc (Groundwater Management)

> Ph: (02) 4236 1334 Fax: (02) 4236 1824 P.O. Box 189 Jamberoo NSW 2533

Reports Distributed to: Kiama Municipal Council: 2 copies & pdf

© Authorisation from Earth2Water Pty Ltd is required for third party use and distribution

 e_2W

TABLE OF CONTENTS

1	1 INTRODUCTION	
	1.1 BACKGROUND AND REMEDIATION ACTIVITIES	
	1.2 OBJECTIVES	5
2	2 SCOPE OF WORK	5
3	3 LICENCE CRITERIA AND RELEVANT GUIDELINES	6
4	4 ENVIRONMENTAL SETTING	
	4.1 CLIMATE	8
	4.2 TOPOGRAPHY	
	4.3 Geology	
	4.4 Hydrogeology	9
	4.5 Hydrology	
5	5 PREVIOUS MONITORING RESULTS	
6	6 SURFACE AND GROUNDWATER MONITORING	
	6.1 MONITORING LOCATIONS	
	6.1.1 Sampling Sites - Groundwater	
	6.1.2 Sampling Sites - Surface Water	
	6.2 SAMPLE COLLECTION AND LABORATORY ANALYSIS	
7	7 MONITORING RESULTS	
	7.1 GROUNDWATER DATA	
	7.1.1 Groundwater Depth and Flow Regime	
	7.1.2 Field Parameters	
	7.1.2.1 pH (field) and Redox	
	7.1.2.2 Total Dissolved Solids (TDS and EC)	
	7.1.2.3 Dissolved Oxygen (DO)	
	7.1.3 Nutrients	
	7.1.3.1 Nitrogen 7.1.3.2 Total Phosphorus (TP)	
	7.1.4 Hydrogeochemical Indicators	
	7.1.5 Inorganic Contaminants (Iron, Manganese and Fluoride)	
	7.1.6 Organic Contaminants	
	7.1.7 Discussion and Trends - Groundwater	
	7.2 SURFACE WATER	
	7.2.1 Field Parameters	
	7.2.1.1 pH (field) and Redox	
	7.2.1.2 Total Dissolved Solids (TDS and EC)	
	7.2.2 Nutrients	
	7.2.2.1 Nitrogen	
	7.2.2.2 Total Phosphorous (TP)	
	7.2.3 Bacteriological Contaminants	
		$-e_2W$

	7.2.4	Inorganic Contaminants	
		Major Ions	
		Quality Assurance/Quality Control	
8	LEA	CHATE PLUME AND LANDFILL REHABILITATION	
8	8.1	Ecological Issues	
9	CON	ICLUSIONS	
Ç	9.1	Recommendations	
10	LIM	ITATIONS	
11	REF	ERENCES	

TABLES

Table GW-1: Summary Analytical Report - Groundwater Table SW-1: Summary Analytical Report - Surface Water Table 6: Groundwater and Surface Water Monitoring (May 2012 to February 2014)

GRAPHS

Graph-01: Groundwater Ammonia Time-Series Trend-Shallow & Creek Wells Graph-02: Groundwater Ammonia Time-Series Trends – Deep Wells Graph-03: Groundwater Total Phosphorous Time-Series Trends – Standard wells Graph-04: Groundwater Total Phosphorous Time-Series Trends – New Shallow & Deep Wells Graph-05: Depth to Groundwater (m AHD) 2001 to February 2014 Graph-06: Surface Water Ammonia Time-Series Trends Graph-07: Surface Water Time Series - Total Phosphorous Trends

FIGURES

Figure 1: Site Location Figure 2: Site Layout & Well Locations Figure 3A: Inferred Groundwater Flow Regime (Wet, February 2014) Figure 3B: Inferred Groundwater Flow Regime (Dry, August 2013) Figure 4: Ammonia Results mg/L (2013-2014)

APPENDICES

Appendix A: Laboratory Certificates and Field Records Appendix B: Rainfall Data Appendix C: Ammonia Trigger Values

1 INTRODUCTION

Earth2Water Pty Ltd (E2W) was engaged by Kiama Municipal Council (Council) to provide an annual groundwater and surface water monitoring report for the Gerroa Waste Disposal Depot (GWDD). The GWDD Environment Protection Licence (EPL) was revoked in May 2008, and altered the previous reporting periods from August–July, to 1 April 2008 - 31 March 2009. The EPL reporting periods and monitoring periods have changed since 2009 (i.e. 2009-2010 monitoring report included results from five monitoring events including February 2009, May 2009, August 2009, November 2009 and February 2010. The 2010-2011 monitoring report included results from four monitoring may 2010, August 2010, November 2010 and February 2011. The 2011-2012 annual report includes results from five monitoring events including May 2012. The 2012-2013 annual report by E2W includes results from four monitoring events including May 2012. August 2012, November 2013).

This annual EPL report (2013-2014) by E2 W includes an assessment of four monitoring events (May 2013, August 2013, November 2013 and February 2014) and is based on Council's project brief (Ref H24/11, August 2004), ALS Environmental Pty Ltd laboratory results and E2W previous reports. This report (2013-2014) is the tenth¹ provided by E2W to the NSWEPA on behalf of Council, and meets the conditions outlined in the EPL (Lic No: 5959, R1.10).

1.1 BACKGROUND AND REMEDIATION ACTIVITIES

Council has owned and operated the GWDD since the 1960's. It was previously licensed as a Solid Waste Class 1 Landfill, operating under the EPL No. 5959. The site also functioned as a night soil depot for liquid pump out sullage. Land filling operations at the GWDD were discontinued in October 2003.

From July 2004 to February 2005, the landfill was rehabilitated to eliminate, or at least minimise the potential for landfill leachate generation. The waste mound was reshaped, capped with a 0.5 m thick clay barrier and 0.3 m thick combined drainage/re-vegetation layer. The former night soil trench was also remediated in August 2004 (i.e. approximately 300 tonnes of bio-solid sludge were excavated and placed underneath the clay cap).

In February 2005, an irrigation system was installed to assist with the re-vegetation of the landfill mound using a combination of native and annual grasses. A groundwater holding dam ($30 \times 30 \text{ m}$) was also constructed next to the two existing evaporation ponds to contain and supply water for the irrigation system. A spear point (yield ~2 L/sec) was installed on the north-west corner of the landfill mound to allow groundwater (and landfill leachate) to fill the holding dam as well as supply water for the irrigation system.

The sludge pond (southern lined dam) at Gerroa Landfill has not been used since Council ceased undertaking the septic clean-outs. Waste Processing Solutions Pty Ltd was engaged by KMC in September 2009 to de-water the sludge in the lined pond, and subsequently taken to a Soilco Pty

¹ First annual report for the period 2003 - 2004 was submitted in October 2004.

Ltd owned site. Removal of the pond liner (HDPE) was undertaken in October 2011 by Council and disposed to Shellharbour landfill (note: spillage of residual sludge may have occurred during removal of the liner).

Up until November 2008, Ecowise Pty Ltd (now ALS) performed the quarterly surface and groundwater monitoring at the landfill site. E2W and Council undertook the monitoring in November 2008, and subsequently Council and/or ALS performing the quarterly monitoring rounds herein. Water samples are sent to ALS for laboratory analyses. The landfill is kept locked at all times.

1.2 OBJECTIVES

Similar to previous years, the objective of monitoring was to assess the potential impact of the GWDD on local surface and groundwater systems. This round of monitoring provides an assessment of water quality improvements associated with the landfill rehabilitation works completed in February 2005.

2 SCOPE OF WORK

E2W was commissioned by Council to collate and interpret surface and groundwater data from the GWDD on 31 May, 30 August, 27 November 2013, and 7 February 2014. Each monitoring event comprised the following:

- Sampling of onsite and offsite groundwater wells MW-1S, MW-1D, MW-3, MW-4, MW-5, MW-6S, MW-6D, MW-7S, MW-7D, MW-9, MW-10 and MW-11.
- Sampling of surface water at two locations along Blue Angle Creek (ML-2, and ML-5²). Only ML-2 and ML-5 locations were sampled during this reporting period (i.e. ML-1, ML-3 and ML-4 were inaccessible due to being located on private property belonging to Cleary Brothers).

Similar EPL reports were completed by E2W for the 2003-2004, 2004-2005, 2005-2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010, 2010-2011, 2011-2012 and 2012-2013 monitoring periods. E2W is required to conduct the following scope of work to satisfy Council's surface and groundwater monitoring program at GWDD:

- Assist Council to interpret quarterly sampling results and provide recommendations.
- Prepare this annual report for May 2013 to February 2014 to provide information in accordance with Section R1.10 of the EPL (No. 5959). The annual report is to include the following:
 - 1. Tabulation of the monitoring data obtained for the period.
 - 2. Graphical representation of the current and previous monitoring data (minimum last three years). Statistically significant variations or anomalies will be highlighted.
 - 3. Analyses and interpretation of monitoring data.

R001 Gerroa Annual Report ESDPES 10-3-14

² November 2008 was the first time ML-5 had been sampled since October 2004.

- 4. Analyses and response to any complaints received.
- 5. Identification of any deficiencies in the environmental performance of the GWDD, as highlighted by the monitoring data, trends and/or accidents.
- 6. Proposal of recommendations to address the above identified deficiencies.
- 7. Recommendations on improving the overall environmental performance of the facility.

3 LICENCE CRITERIA AND RELEVANT GUIDELINES

The EPL for the GWDD was revoked by the DECC in May 2008. The ongoing groundwater monitoring is undertaken to assess the effectiveness of the capping works and environmental status of the landfill post closure and rehabilitation. The revocation notice is subject to the following conditions:

- The licensee must maintain the landfill capping works.
- The licensee must undertake groundwater monitoring at groundwater wells MW-1S, MW-1D, MW-3, MW-4, MW-5, MW-6S, MW-6D, MW-7S, MW-7D, MW-9, MW-10 and MW-11 (in accordance with Table 3.1 below).
- Should the monitoring results indicate ammonia concentrations greater than 20% above ammonia concentrations reported in Table GW-1 of *Kiama Municipal Council, Gerroa Waste Disposal Depot Annual Groundwater and Surface Water Monitoring Report August 2006 to May 2007*, dated 17 August 2007, the licensee must notify the EPA within 7 days of receiving the results.
- The licensee must undertake surface water monitoring at surface water monitoring points ML-1, ML-2, ML-3, ML-4 and ML-5 (in accordance with Table 3.1 below).
- Should the monitoring results indicate ammonia concentrations greater than 10% above ammonia concentrations reported in Table SW-1 of *Kiama Municipal Council, Gerroa Waste Disposal Depot Annual Groundwater and Surface Water Monitoring Report August 2006 to May 2007*, dated 17 August 2007, the licensee must notify the EPA within 7 days of receiving the results (Appendix C).
- The licensee must dewater, clean out and cap the two HDPE lined liquid storage ponds
 - o By 1 January 2009, or
 - When the ponds are no longer required, or
 - If the liner is breached (whichever is the earlier).

·e2W

Parameters	Monitoring Frequency - Groundwater	Monitoring Frequency – surface water
Alkalinity	Quarterly	Quarterly
pH	Quarterly	Quarterly
Conductivity	Quarterly	Quarterly
Total Dissolved Solids	Quarterly	Quarterly
Nitrogen (Ammonia)	Quarterly	Quarterly
Phosphorous (Total)	Quarterly	Quarterly
Nitrate	Quarterly	Quarterly
Nitrite	Quarterly	Quarterly
Total Kjeldahl Nitrogen	Quarterly	Quarterly
Calcium	Annual	Annual
Chloride	Annual	-
Fluoride	Annual	-
Magnesium	Annual	Annual
Sulphate	Annual	-
Sodium	Annual	Annual
Bicarbonate	Annual	Annual
Carbonate	Annual	Annual
Potassium	Annual	Annual
Dissolved Organic Carbon	Annual	-
Iron	Annual	Annual
Manganese	Annual	Annual
Redox Potential	Annual	Annual
Faecal Coliforms	-	Annual
Enterococci	-	Annual

Table 3.1: Surface and Groundwater Monitoring Requirements

Note: Bicarbonate/alkalinity was conducted on quarterly basis (only an annual requirement).

The parameters listed in Table 3.1 have been tested in the May, August, November 2013 and/or February 2014 (Table 6). Annual parameters were sampled during the August 2013 monitoring period. Ongoing monitoring with the same parameters is proposed for the future monitoring reports.

The DECC's Contaminated Sites: Guidelines for Assessment and Management of Groundwater Contamination (March 2007) outlines a best-practice framework for assessing and managing groundwater contamination. The guidelines are made under the Contaminated Land Management Act (1997) and recommend adopting the ANZECC (2000) chemical concentration trigger values for the protection of (fresh and marine) aquatic ecosystems.

The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000) guidelines include risk-based trigger levels and indicative interim working levels (IIWLs). The IIWLs are of low reliability and used when insufficient data is available to calculate a trigger level. It should be noted that the ANZECC (2000) water quality guidelines are applicable to receiving water and not to groundwater. However, they form an appropriate basis for undertaking a screening level assessment of groundwater quality. The selection of the applicable guideline values should be based on an assessment of potential pathways by which human or environmental exposure might take place and the beneficial end use of the groundwater (i.e. ecosystem support).

R001 Gerroa Annual Report ESDPES 10-3-14

The choice of a beneficial use classification for groundwater at the site depends on the quality of the water and its potential use in the long term. Although groundwater in the aquifer surrounding the waste disposal facility is likely to be of relatively good quality (depending on the presence of saline intrusions), there are no known groundwater extraction bores (agricultural or domestic) within the immediate vicinity. Therefore, the most appropriate beneficial use category of the groundwater is considered to be for the protection of aquatic ecosystems in the discharge zones of nearby Blue Angle Creek and Seven Mile Beach (fresh and marine water, respectively).

Based on the closest environmental receptors being both marine and fresh waters (i.e. Seven Mile Beach, Blue Angle Creek and Crooked River Estuary), the guidelines adopted for the site are based on the protection of both marine and fresh water aquatic ecosystems. These assessment guidelines are presented with the summarised analytical results (i.e. Tables GW-1, SW-1). Exceedances of reliable trigger ANZECC (2000) for marine water ecosystems have been highlighted in Tables GW-1 and SW-1.

4 ENVIRONMENTAL SETTING

The GWDD is located approximately 1.5 km southwest of the Gerroa Road bridge crossing of Crooked River and near the northern end of Seven Mile Beach. Blue Angle Creek is located around 80 m to the northwest of Crooked River Road (Figure 1).

The facility covers an area of approximately 3.2 hectares. The location and general layout of the site is shown in Figures 1 and 2. Prior to the remediation of the site in February 2005, the GWDD comprised the following:

- An elevated landfill mound ranging from 4 m to ~15 m AHD,
- Two lined evaporation sludge ponds. These accepted septic sludge associated with Gerringong's upgraded sewerage system,
- A night soil deposit, which historically accepted night soil sludge; and
- A small recycling facility.

The former night soil depot is located adjacent to the north-western slope of the landfill mound (Figure 2). The former depot consisted of two excavated infiltration trenches which, up until August 2002, received pump-out wastewater from septics in the Gerringong/Gerroa region. The two trenches were approximately 100 m in length (5 m wide) and while operational, partially filled with untreated wastewater.

4.1 CLIMATE

Between 1895 and 2011, the average yearly rainfall at Gerringong Mayflower Village (Latitude 34.75° S, Longitude 150.82° E) is 1343.4 mm/year, with the heaviest rainfalls occurring in summer and autumn months. However, rainfall data from Toolijooa (Nyora) Station is taken from July 2012 due to the closure of Mayflower Village Station. Climatic data indicates Gerringong received approximately 1504.4 mm of rain from February 2013 to February 2014³ (Monthly Rainfall Graph, Appendix B). The highest month of rainfall recorded was 308.8 mm in June 2013.

R001 Gerroa Annual Report ESDPES 10-3-14

·e2W

³ Information obtained from the Bureau of Meteorology website (www.bom.gov.au/climate).

4.2 TOPOGRAPHY

A general layout of the site topography is presented in Figure 1. The GWDD is located in an estuarine landscape consisting of dune ridges, swamps and lagoons. The vegetation surrounding the facility comprises scrub and a littoral rainforest. Local relief is less than 5 m AHD and slopes less than 5%. The landfill forms a mound, reaching ~12 m above the surrounding ground surface.

The reduced groundwater level (RL) of the landfill footprint area ranges from ~ 3.3 to 5.2 m AHD. The footprint area (23,000 m²) and height of the rehabilitated landfill mound (15.9 m AHD, July 2005) is practically the same as pre-remediation conditions (i.e. October 2003).

4.3 GEOLOGY

The GWDD is located within the Seven Mile Soil Landscape as defined by Hazelton (1992). Coastal Plain Quaternary marine sands and Quaternary alluvium underlie the site.

Previous site investigations, as discussed in the URS report (2002), identified light brown fine-grained dune sands to a depth of 4 - 6 m below grade. The sands vary in thickness (between dune ridges and swales) and are largely contained above the groundwater table.

Beneath the dune sands, fine-grained grey beach sands containing shell fragments are present to a depth of approximately 14 m. The base of the sequence comprises estuarine silty and sandy clays. Further inland, the sedimentary sequence comprises estuarine clays closer to the surface, particularly in the vicinity of Blue Angle Creek where the ground surface is 2 - 3 m lower than the landfill area.

4.4 HYDROGEOLOGY

The GWDD is underlain by an unconfined and permeable sandy aquifer. Groundwater is encountered at a depth of approximately 3 - 4 m below ground level (i.e. ~ 1 m AHD) at the landfill area and becomes shallower towards Blue Angle Creek to the west and Seven Mile Beach to the east.

The groundwater quality varies from potable to saline, with electrical conductivities ranging from 0.3 to 60 mS/cm. The groundwater generally becomes more saline with depth and in the vicinity of tidal saline water bodies (i.e. Blue Angle Creek and Seven Mile Beach).

The hydraulic conductivity of the beach and dune sands at Gerroa has a geometric average of 10 m/day (Gerroa-Gerringong Sewerage Scheme EIS, 1999). It is noted that the organic silty sands between 0 - 0.15 mbgl have a lower permeability (approximately 0.1 m/day, E2W site investigations, March 2004).

In the area of the GWDD, groundwater gradients are controlled by topography, the Seven Mile Beach shoreline, Blue Angle Creek and Crooked River Estuary. It is interpreted that a natural groundwater divide runs through the landfill (URS 2003, E2W 2004), with groundwater to the west flowing towards Blue Angle Creek and groundwater to the east towards Seven Mile Beach. It is likely the natural groundwater divide is influenced by the coastal dunes and presence of the

-e2W

landfill mound (due to increased recharge). The position of the groundwater divide may change with the tide and seasons. During 2004/2005 (a drought period), the predominant flow direction was considered to be east towards Seven Mile Beach.

Groundwater discharge at Blue Angle Creek and Seven Mile Beach will be influenced by the presence of a fresh groundwater/salt water interface. The interface results from the density difference between the groundwater and sea water and is a dynamic and complex region with upward hydraulic gradients, tidal fluctuations, micro-biological processes, groundwater and surface interaction and substantial salinity variations. The groundwater/salt water interface can be associated with enhanced natural attenuation (biodegradation, dilution, sorption etc.), which acts to reduce the levels of contaminants prior to their discharge to marine ecosystems.

Groundwater is also interpreted to discharge as baseflow within Blue Angle Creek. Due to the action of tides, salt water is intermittently present in Blue Angle Creek with salinity governed by tide levels. The saline water intrusion at high tide extends approximately 2 km upstream of the confluence between Blue Angle Creek and Crooked River.

It is understood offsite migration of contaminants (nutrients, iron and some ammonia) has occurred in the local shallow and deep groundwater systems (URS 2002, 2003; E2W 2004, 2006). This groundwater contamination arises from nutrient enrichment, which is associated with the former landfilling operations at the GWDD.

The leachate plume identified in the well network arises from historical waste disposal at the site, which commenced in the 1960s. The landfill remediation (completed in February 2005) will reduce future landfill leachate generation, however shrinking/diminishing of the existing plume will depend on natural attenuation processes (i.e. dilution, adsorption, biodegradation dispersion etc.) over time (years).

The groundwater quality immediately outside the footprint area is subjected to increased dilution arising from runoff (1 ha) and groundwater recharge from the landfill mound. This dilution together with natural attenuation decreases the leachate levels in the aquifer.

4.5 HYDROLOGY

The hydrology of the area is dominated by Blue Angle Creek, Crooked River and Seven Mile Beach (Figure 2).

The closest environmental receptors of water running through the GWDD are Blue Angle Creek, Seven Mile Beach and Crooked River Estuary (Figure 1). Blue Angle Creek flows into the Crooked River Estuary at the northern end of Seven Mile Beach. The estuary discharges into the ocean when the mouth is open.

Previous Crooked River and Blue Angle Creek surface water quality investigations were discussed in the URS report (2002). The results indicate a considerable variation in water quality, particularly between dry and wet conditions, which may be associated with inputs from the wider catchment area.

R001 Gerroa Annual Report ESDPES 10-3-14

When the entrance to Crooked River is open, the lower part of the river is well flushed with oceanic waters. This results in levels of nutrients, bacteria and toxicants that generally comply with guideline levels. Immediately following wet weather, water quality in the estuarine section of Crooked River generally deteriorates, with increased levels of particulate material, bacteria, sulphide, nutrients and metals (URS, 2003).

Of the four main tributaries that feed into the estuarine section of Crooked River, water quality in Blue Angle Creek was the most degraded with phosphorus, nitrogen, hydrogen sulphide, copper and zinc (URS, 2003).

All surface water runoff from the landfill mound is diffused into the surrounding sandy soils.

5 PREVIOUS MONITORING RESULTS

The primary conclusion from the monitoring report submitted by URS (2002-2003) prior to remediation in 2005 is summarised below:

• High concentrations of nutrients, in particular ammonia-nitrogen, continue to be detected under the site and migrating offsite. The levels recorded are well in excess of ANZECC (2000) guidelines for the protection of fresh and marine water ecosystems.

The following key points are also noted:

- High concentrations of ammonia-nitrogen and TKN were consistently detected in monitoring wells MW-1 and MW-5, which are located on the outer extent of the facility. This indicates the potential for migration of the nutrient plume in a south-easterly direction towards Seven Mile Beach. High concentrations of ammonia-nitrogen were also detected in monitoring wells MW-3 and MW-7, which are also located on the outer extent of the facility, indicating the potential for migration of the nutrient plume in a north-westerly direction towards Blue Angle Creek.
- Elevated concentrations of ammonia-nitrogen were detected in the shallow monitoring wells MW-9 to MW-11, adjacent to Blue Angle Creek.

6 SURFACE AND GROUNDWATER MONITORING

Surface and groundwater monitoring between May 2013 and February 2014 was undertaken by Ecowise Pty Ltd (now ALS Environmental). Sampling was carried out on the following dates:

- 31 May 2013
- 30 August 2013
- 27 November 2013
- 7 February 2014

The recommended procedure for sample collection, storage, handling and quality control generally employed by Ecowise (ALS) is outlined in the SGMP by AWT (1999a). E2W used the November

 $-e_2W$

2008 sampling round to instruct Council staff on surface and groundwater sampling protocol. The samples were sent to ALS (Sydney) for laboratory analyses. E2W understand that ALS carry out the quarterly sampling at the GWDD and submit the samples to ALS (Sydney via the Wollongong office) for analyses.

6.1 MONITORING LOCATIONS

The following outlines the nature of the monitoring and analytical program at the site and the conditions at the time of sample collection from information provided by ALS and/or Council.

Groundwater was sampled from six monitoring wells (MW-3, MW-4, MW-5, MW-9, MW-10, MW-11), and three nested wells (MW-1S/MW-1D, MW-6S/MW-6D and MW-7S/MW-7D, where S = shallow, D = deep).

Surface water was sampled at two locations (ML-2 and ML-5) along Blue Angle Creek (Figure 2). Samples were not collected from ML-1, ML-3 or ML-4 due to restricted access to sample locations (private land owned by CB). Samples were not collected from Seven Mile Beach (BS-1 to BS-4), or the ocean (OS-1 to OS-4) during May 2012 to February 2013. Previous results from these locations indicate that it is unlikely landfill leachate is impacting these areas.

Variable EC levels in surface water testing locations indicate that sampling may not have been undertaken during low tide (sampling at low tide provides a reflection of groundwater discharge).

6.1.1 Sampling Sites - Groundwater

The sampling sites are described below, while sampling depths for the bundled piezometers and conventional wells are summarised in Table 6.2.

- MW-1S (shallow 6 m depth) and MW-1D (deep 10.5 m depth)⁴ Located next to the previous multilevel piezometer MW-1 and approximately 40 m from the SE corner of the landfill perimeter. The well is situated down-gradient of the landfill mound and intended to intersect flow heading towards Seven Mile Beach.
- MW3 Approximately 20 m to the north of the landfill clearing, fronting native bushland. This well is to establish background water quality conditions and determine offsite migration of groundwater in a northerly direction.
- MW4 Located immediately adjacent to the night soil depot, which is a source of potential nutrient and bacterial contamination.
- MW5 Approximately 30 m to north of the night soil depot. The well is within the extent of contamination arising from the depot and landfill-impacted groundwater.
- MW-6S (shallow 6 m depth) and MW-6D (deep 10.5 m depth) Located next to multilevel piezometer MW-6 and approximately 50 m NW of landfill and night soil depot. The well is situated down-gradient of the landfill and night soil depot.

R001 Gerroa Annual Report ESDPES 10-3-14

⁴ Nested shallow and deep wells are constructed with a 3 m well screen.

- MW-7S (shallow 6 m depth) and MW-7D (deep 10.5 m depth) Located 15 m to the east of multilevel piezometer MW-7 and approximately 100 m NW of landfill and night soil depot. This well was installed to establish background water quality conditions and determine offsite migration of groundwater contaminants towards Blue Angle Creek.
- MW9 Located offsite and adjacent to Blue Angle Creek downstream of ML-1 to determine if
 potentially contaminated groundwater is discharging into the estuarine environment.
 MW10 Located offsite and adjacent to Blue Angle Creek downstream of ML-1 to determine
 if potentially contaminated groundwater is discharging into the estuarine environment.
 MW11 Located offsite and adjacent to Blue Angle Creek downstream of ML-1 to determine
 if potentially contaminated groundwater is discharging into the estuarine environment.

6.1.2 Sampling Sites - Surface Water

Blue Angle Creek

- ML-1 Approximately 100 m upstream of the depot along Blue Angle Creek at the end of the tidal limit. This sampling location was chosen to establish upstream water quality and offsite conditions.
- ML-2 Approximately 500 m downstream of the depot along Blue Angle Creek. This sampling location was chosen to establish offsite and downstream water quality and assess the potential for contamination associated with the depot.
- ML-4 Approximately 100 m upstream of the flood gates along Blue Angle Creek. This sampling location was chosen to establish upstream water quality and offsite conditions.
- ML-5 Approximately 400 m downstream of the flood gates along Blue Angle Creek, between MW-9 and MW-11. This midstream sampling location was chosen to establish offsite receptor water quality conditions.

The surface water and groundwater sample locations are illustrated in Figure 2, and Table 6.1.2.

	ntoring Summary for Way				
Sample ID	Screen Interval	31 May	30 August	27 November	7 February
	(m AHD)	2013	2013	2013	2014
	& Sample Location				
MW-1S	Approx. 0 to -3	Х	Х	Х	Dry
MW-1D	Approx4 to -7	Х	X	X	Х
MW-3	0 to 1.5	Х	X	X	Х
MW-4	0.79 to -0.71	Х	Х	X	Х
MW-5	0.55 to -0.95	Х	X	X	Х
MW-6S	Approx 0 to -3	Х	X	X	Х
MW-6D	Approx -4 to -7	Х	X	X	Х
MW-7S	Approx 0 to -3	Х	X	X	Х
MW-7D	Approx -4 to -7	Х	X	X	Х
MW-9	-0.53 to -1.53	Х	X	X	Х
MW-10	-0.525 to -1.525	Х	Х	X	Х
MW-11	0.095 to -0.905	Х	X	X	Х
ML-1	Upstream of landfill	No access	No access	No access	No access
ML-2	Downstream of landfill	Х	X	X	Х
ML-3	Upstream of landfill	No access	No access	No access	No access
ML-4	Upstream of landfill	No access	No access	No access	No access
ML-5	Opposite landfill	Х	Х	X	Х

Table 6.1.2: Monitoring Summary	for May 201	3 to February 2014
---------------------------------	-------------	--------------------

Notes:

 $X = Sample \ collected.$ $MW = Monitoring \ well \ sample \ from \ landfill \ site.$ $ML = Surface \ water \ sample \ from \ Blue \ Angle \ Creek.$ The 6 wells (MW-1S/MW-1D etc) are considered more reliable monitoring locations (compared to multilevel piezometers) as they were constructed with standalone 50 mm diameter PVC screens and not the 7 mm poly tubing (low flow system).

6.2 SAMPLE COLLECTION AND LABORATORY ANALYSIS

The surface and groundwater analytical program from May 2013 to February 2014 is presented in Tables GW-1 and SW-1. The nested wells (MW-1S, MW-1D, MW-6S, MW-6D, MW-7S, MW-7D) installed in 2006 have replaced the bundled piezometers ⁵ (i.e. MW-1, MW-6, MW-7).

7 MONITORING RESULTS

All groundwater and surface water analytical results from 2003 to 2014 are presented in Tables GW-1 and SW-1, with the most recent (4) monitoring data highlighted. The field records and laboratory reports are presented in Appendix A and Table 6 (summary of data set).

A summary of all available monitoring data (2003 to 2014) is presented in Graph-01 to Graph-07. The graphs illustrate ammonia and total phosphorous concentrations (key indicators of leachate impact) for the groundwater wells⁶ and surface water sampling locations as well as the depth to groundwater (m AHD, 2001 to February 2014).

R001 Gerroa Annual Report ESDPES 10-3-14

 $-e_2W$

⁵ The bundled wells were believed to provide spurious results due to the low purge volumes.

⁶ Results from multilevel piezometers MW-1, MW-6 and MW-7 (Graph-01 & Graph-03) are considered anomalous.

The graphs illustrate the ammonia concentrations in the shallow (Graph-01) and deep monitoring wells separately (Graph-02). Contaminant migration rates and flushing characteristics are different at shallow and deep levels of the aquifer.

The graphs highlight water quality trends with respect to seasonal and water level changes, as well as water quality improvements associated with the landfill rehabilitation completed in 2005.

7.1 GROUNDWATER DATA

Groundwater was collected from a network of twelve monitoring wells at onsite and offsite locations (Figure 2) in May, August, November 2013 and February 2014. The results of the groundwater results obtained are summarised in Table GW-1, Graph-01 to Graph-05 and the following subsections.

7.1.1 Groundwater Depth and Flow Regime

The depth to groundwater was measured prior to each sampling event (in conventional wells) using a water level probe. The depth to the groundwater below top of casing and relative to a common reference (i.e. Australian Height Datum, m AHD) is presented in Table GW-1. The inferred groundwater contours are presented in Figures 3A & 3B. Reduced groundwater levels (m AHD) between 2001 and 2014 are illustrated in Graph-05.

A groundwater divide is interpreted to occur at the landfill mound (sand dune area) and inferred to be located midway between Crooked River and Seven Mile Beach. As the position of the groundwater divide is influenced by the surface water bodies, the prevailing climate and recharge through the waste mound, it is likely local groundwater flow characteristics have altered over recent years.

The reduced groundwater levels from the twelve wells indicate a relatively low water table elevation. Field sampling records show that the depth to groundwater between October 2003 and February 2012 is below 1.87 mAHD. The groundwater levels recorded from the 2011-2012 monitoring round are slightly higher than the 2012-2013 & 2013-2014 monitoring periods, reflecting less rainfall infiltration occurring over the last two years.

The inferred groundwater contours for the site are presented in Figures 3A & 3B. The groundwater levels and degree of mounding is generally variable, indicating a dynamic groundwater environment dependent upon rainfall recharge (aquifer is unconfined and sandy soils are highly permeable at the site).

The groundwater data indicates comparable groundwater levels during the 2012-2013 and 2013-2014 monitoring periods, approximately 0.1-0.3 m less rainfall infiltration occurring in comparison to 2011-2012 of 1628.4 mm/yr.

7.1.2 Field Parameters

The groundwater, field parameters measured during sampling are considered indicative only (small purge volumes). Insitu measurements (within borehole) are likely to provide a more accurate rendition of the field chemistry, especially with respect to dissolved oxygen.

7.1.2.1 pH (field) and Redox

The groundwater pH measured from the twelve wells ranges from pH 5 to 7.8 (MW-10, May 2013 and MW-7S, November 2013/February 2013, respectively). The pH in each well was generally stable over the four monitoring rounds (May 2013 to February 2014).

On its own, pH is not considered a reliable indicator of leachate contamination, as sediments and decomposing organic material associated with the creek bed also have a significant influence on pH.

Redox was not measured during the previous monitoring periods (2010 to 2011 and 2009- 2010) but was measured in August 2011 during 2011-2012 sampling round, and August 2012 during the 2012-2013 monitoring period. Similarly redox was only measured in August 2013 during the 2013-2014 sampling round, ranging from 161 to -147 mV. In each well redox is generally comparable to previous monitoring periods.

7.1.2.2 Total Dissolved Solids (TDS and EC)

The TDS levels in groundwater collected from the site range from 201 to 19,400 mg/L (fresh to brackish). The lowest and highest TDS levels were obtained from MW-7S and MW-10, respectively. The TDS level for MW-10 is related to the well's proximity to Blue Angle Creek. In the 2007-2008 monitoring period, the TDS levels reported from MW-9 were significantly lower than previously (<5,000 mg/L). The TDS levels reported in August 2008 to August 2010 had increased to similar levels to those reported pre-August 2007, however since November 2010 results show a significant decrease in levels once more (<6,500 mg/L) with the exception of February 2012 which increased to 9,530 mg/L. In 2012-2013, MW-9 has variable increases (TDS) to 8,220 mg/L. During 2013-14, MW-9 showed increases during November and February, and significant decrease in August (671 mg/L).

Wells located within the vicinity of the landfill mound (MW-3 to MW-6) have low TDS levels, between 219 to 496 mg/L which is similar to previous monitoring rounds (2012-2013, 2011-2012, 2010-2011, 2009-2010 and 2008-2009). The distribution of TDS levels reflects the location of rainfall recharge and fresh water near the groundwater divide (landfill area).

Salinity increases as groundwater flows towards Blue Angle Creek (MW-9 to MW-11). A decrease in salinity (TDS) occurs in several wells close the landfill perimeter (i.e. MW-3, MW-4, MW-5), which is interpreted to occur from dilution arising from an increase in stormwater runoff from the landfill mound post-capping (& decreased leachate generation).

R001 Gerroa Annual Report ESDPES 10-3-14

7.1.2.3 Dissolved Oxygen (DO)

Field analyses from the twelve wells recorded dissolved oxygen (DO) concentrations ranging between 0.72 and 3.89 mg/L (MW-1S November 2013 and MW-10 February 2014, respectively). The concentrations of DO reported for the site from 2003 to 2014 are variable. However, measurements may reflect the instruments (imprecise) used and/or purging process.

Based on the distribution of DO in the groundwater at the site, it is inferred that landfill leachate caused a depletion of groundwater DO and is generally increasing due to decreasing nutrient concentrations. This phenomenon is seen on many landfill sites, where organic carbon and nutrients provide surplus electron acceptors, which react with and consume the available DO in the groundwater. It is likely the groundwater under the landfill mound is anaerobic due to the presence of the landfill leachate (DOC, ammonia etc.).

7.1.3 Nutrients

7.1.3.1 Nitrogen

Groundwater collected from the monitoring wells at the GWDD were analysed for ammonianitrogen, total Kjeldahl nitrogen (TKN) and oxidised nitrogen (nitrate and nitrite). Discussions regarding potential impact to the environment will focus on ammonia-nitrogen, as it is the main indicator of groundwater contamination.

The guidelines for total ammonia-nitrogen for the protection of fresh water and marine ecosystems vary according to pH and temperature. Given the range of pH and temperature measured across the site and in Blue Angle Creek, the guidelines are 1.88 and 2.84 mg/L for fresh and marine waters, respectively (at a pH of 7.3).

All groundwater samples collected from MW-6D and MW-7D in May 2013 to February 2014 exceeded the ANZECC (2000) trigger value for ammonia. Groundwater from MW-7S exceeded the ANZECC (2000) trigger value for ammonia in May 2013 only. These monitoring wells are located west of the landfill mound, indicating leachate is migrating towards Blue Angle Creek.

Groundwater wells (MW-1, MW-3 and MW-4 pre-rehabilitation) initially reported the highest concentrations of ammonia. Following the landfill rehabilitation, ammonia levels have declined in the shallow groundwater system and are below ANZECC guidelines (Graph-01). The groundwater from deep wells (MW-1D, MW-6D and MW-7D) show a clear declining trend, however MW-6D and MW-7D are still elevated above ANZECC guidelines. The ammonia concentrations show a clear reduction in nutrient loading in the deep aquifer (ammonia generally below 10 mg/L in the 3 key deep wells) and water quality improvement at the site.

Nitrate was analysed for all samples (May 2013 to February 2014) with MW-1D, MW-6S, and MW-6D exceeding the ANZECC (2000) guideline (fresh water trigger value, 0.7 mg/L) at least once in the 2013-2014 monitoring period. MW-9 which has not exceeded guidelines for nitrate since February 2007, reported elevated levels above guidelines in 2010 however decreased below 0.19 mg/L in 2011-2012, 0.11 mg/L in 2012-2013, and <0.1 mg/L in 2013-2014.

All groundwater samples analysed from all twelve wells in May, August, November 2013 and February 2014 exceeded ANZECC (2000) fresh and marine water TKN trigger values (0.5 and 0.12 mg/L, respectively). Monitoring wells located adjacent to Blue Angle Creek (i.e. MW-9, MW-10, MW-11) continue to report stable or decreasing concentrations of ammonia (Graph 1).

Table 7.1.3.1 (below) and Figure 4 provide an overview of groundwater ammonia trends from May 2013 to February 2014 reporting period.

Well ID	Ammonia Trend	Trigger 20% exceedance (Ammonia)	Comment
MW-1S	Decreasing trend. Levels below 0.34 mg/L, below ANZECC	No exceedance	Shallow sample - east of landfill
MW-1D	Variable trend Maximum November 2013 (4.13 mg/L), levels above ANZECC (except February 2013) Overall decreasing levels since August 2009	No exceedance	Deep sample - east of landfill
MW-3	Decreasing/stabilising trend. Levels below 0.93 mg/L, below ANZECC	No exceedance	North of landfill
MW-4	Decreasing/stabilising trend. Levels below 1.86 mg/L, below ANZECC mg/L	No exceedance	West of landfill
MW-5	Stable trend. Levels below ANZECC (except November 2013 @ 5.88 mg/L)	No exceedance	North of landfill
MW-6S	Stable trend. Levels below 0.29 mg/L, below ANZECC	No exceedance	Shallow sample - down- gradient of night soil deposit
MW-6D	Stable trend. Maximum May 2013 (14.6 mg/L), levels all above ANZECC	No exceedance	Deep sample - down- gradient of night soil deposit
MW-7S	Decreasing/Stabilising trend. Maximum May 2013 (1.91 mg/L). Levels below ANZECC (except for May 2013)	No exceedance	Shallow sample - down- gradient and adjacent to Crooked River Road
MW-7D	Stabilising trend. Maximum May 2013 (2.81 mg/L) Levels all above ANZECC	No exceedance	Deep sample - down- gradient and adjacent to Crooked River Road
MW-9	Stable/decreasing trend. Levels below 0.32 mg/L (November 2013), below ANZECC	No exceedance	Next to Blue Angle Creek
MW-10	Stable trend. Levels below LOR 0.3 mg/L (November 2013), below ANZECC	No exceedance	As above
MW-11	Decreasing trend. Levels below LOR 0.07 mg/L (May 2013), below ANZECC	No exceedance	As above

Table 7.1.3.1: Groundwater Ammonia Trends - May 2013 to February 2014

Note: Three wells (MW-9, 10, 11) are located on the creek bank, potentially affected by flood waters and vegetation (rotting, and new growth). ANZECC (2000) refers the marine trigger value (2.84 mg/L).

As outlined in the revocation notice, ammonia concentrations greater than 20% above ammonia concentrations reported in Table GW-1 of *Kiama Municipal Council, Gerroa Waste Disposal Depot - Annual Groundwater and Surface Water Monitoring Report - August 2006 to May 2007*, dated 17 August 2007 are to be highlighted (no exceedances, refer to Appendix C).

7.1.3.2 Total Phosphorus (TP)

The ANZECC (2000) TP guideline for fresh and marine ecosystems is 0.05 and 0.025 mg/L, respectively. Between May 2013 and February 2014, all groundwater results from MW-1S, MW-1D (except May & August 2013), MW-3, MW-4, MW-5, MW-6S, MW-6D, MW-7S, MW-7D, MW-9, MW-10 (except November 2013 & February 2014) and MW-11 exceeded the ANZECC (2000) trigger values (Table GW-1 and Graphs 3 & 4).

MW-6D (located down gradient of the former night soil deposit and landfill) reported a maximum of 6.84 mg/L in the 2011-2012 monitoring period, however decreased to a maximum of 4.8 mg/L in the 2012-2013 monitoring period. In 2013-2014 total phosphorous was reported a maximum of 9.07 mg/L indicating a variable trend. MW-7D reported an increase in maximum TP (8.46 mg/L, November 2014) compared to the previous monitoring period (1 mg/L, May 2012). TP at MW-6D and MW-7D (near former night soil) shows a variably increasing trend (Graph-4) and may relate to the recent dewatering/sludge pond decommissioning (further monitoring required to verify impacts in the deep groundwater).

During the 2013-2014 monitoring period, MW-6S (shallow nested well) initially showed a decreasing trend and a maximum of 0.8 mg/L (February 2014), comparable to the 2012-2013 maximum (0.63 mg/L) and significantly lower than the 2011-2012 maximum of 8.81 mg/L. TP at MW-4 (located south of the night soil deposit) indicate a variable but potentially increasing trend (Graph 3). The August 2012 monitoring event reported a maximum TP (4.29 mg/L) at MW-4, which is lower than the maximum TP in 2011-2012 (7.98 mg/L, the highest to date since sampling began in June 2003). The removal of the liner from the sludge pond in October 2011 may have impacted the 2011-2012 results (particularly MW-6S).

The concentrations of TP immediately east and north of the landfill (MW-3 and MW-5) and next to Blue Angle Creek (MW-9 to MW-11) are much lower, indicating that the former night soil deposit is a likely source of TP.

In relation to the former night soil deposit (primary TP source), a localised TP plume is interpreted to potentially migrate towards Blue Angle Creek (MW-4/MW-6S to MW-7S, and possibly to MW5). The TP plume is also detected at MW-4 (south of the night soil deposit). Potentially increasing TP concentrations in the deep wells (10.5 m depth, MW-6D, MW-7D) show that the plume may have reached the deep aquifer, however further monitoring is required to determine trends. The TP concentrations of TP on the east/north (MW-3/MW1) are likely to originate from the landfill mound.

TP concentrations at MW-1S (eastern side of landfill) show a variable and possibly increasing trend; however further monitoring is required to verify the trend.

7.1.4 Hydrogeochemical Indicators

Concentrations of major ions (i.e. chloride, sulphate, calcium, magnesium, sodium, alkalinity and potassium) are presented in Table GW-1. The concentrations at all monitoring wells are within previously reported ranges and characterised by the ions sodium, chloride and bicarbonate (alkalinity).

The landfill is interpreted to contribute concentrations of ions including calcium, potassium, magnesium and bicarbonate/alkalinity). Contribution of sodium and chloride is difficult to ascertain as these ions are common in marine environments (e.g. salt spray, tidal influence) and abundant in wells close to Blue Angle Creek (MW-9, MW-10, MW-11) or in proximity to Seven Mile Beach (MW-1S, MW-1D).

7.1.5 Inorganic Contaminants (Iron, Manganese and Fluoride)

Iron concentrations were only analysed for samples collected on 30 August 2013. Concentrations of total iron (filtered at the laboratory) ranged between <0.05 and 29.0 mg/L (MW-1D/MW-6D/MW-7D/MW-10/MW-7S/MW-11/MW-9/MW-6S/MW-4/MW-5/MW-3, and MW-1S, respectively). With the exception of MW-1D, MW-6D & MW-7D all samples were above the ANZECC (2000) guideline for iron in fresh water ecosystems (0.3 mg/L). Several sources of iron are likely to exist at the site (lithology and landfill).

The ANZECC (2000) guideline for iron is an indicative interim working level (IIWL) and is of low reliability. No guideline is available for iron in marine water, which is more relevant for Blue Angle Creek and Crooked River receiving water bodies.

Manganese concentrations were only analysed for samples collected on 30 August 2013. Concentrations of manganese ranged between 0.004 (MW-11/MW-9) and 0.272 mg/L (MW-4), with no exceedance of the ANZECC (2000) fresh water guideline (1.9 mg/L).

The levels of filterable iron and manganese are generally similar to previous reporting periods. Iron levels in 2013-2014 decreased at MW-3 MW-4, and MW-11 compared to 2012-2013 reporting period, however all other wells showed an increase in concentration.

Concentrations of fluoride (only sampled in August 2013) ranged from <0.1 (MW-7S, MW-10) to 0.4mg/L (MW-6S, MW-6D), which are similar to previous reporting periods (2012-2013, 2011-2012, 2010-2011). No reliable ANZECC (2000) guideline exists for fluoride in fresh or marine waters.

7.1.6 Organic Contaminants

Dissolved organic carbon (DOC) concentrations were only analysed for samples collected on the 30 August 2013. The concentration of dissolved organic carbon (DOC) in samples from the twelve

R001 Gerroa Annual Report ESDPES 10-3-14

wells ranged from 8 mg/L (MW-7S) to 64 mg/L (MW-11). The results are generally comparable to previous monitoring periods. No recommended ANZECC (2000) guidelines exist for DOC.

7.1.7 Discussion and Trends - Groundwater

The key trends in groundwater levels and nutrient contamination from 2003 to 2014 are presented in Graph-01 to Graph-05. The monitoring data indicates that ammonia concentrations in the deep groundwater are elevated above ANZECC guidelines (Graph-02). Trends for the deep wells (MW-1D, MW-6D and MW-7D) show a clear declining trend since August 2009 (Graph-02).

Groundwater (ammonia) trends for the three wells (MW-09, 10, 11) located adjacent Blue Angle Creek show a declining trend (Graph-01). These three wells are influenced from tides and flooding.

Graph-01 indicates ammonia concentrations in the shallow wells have steadily decreased since land-filling operations at the GWDD ceased in October 2003.

Prior to landfill rehabilitation, groundwater quality trends indicate landfill leachate generation may be related to rainfall recharge into buried waste and subsequent groundwater and contaminant migration. The results post-landfill rehabilitation indicates landfill leachate concentrations in the shallow groundwater are decreasing, becoming diluted from attenuation/rainfall via runoff from the landfill mound. The potential for landfill leachate generation was significantly reduced following remedial works, as the buried waste was capped with an impervious clay barrier.

The groundwater ammonia trends (ammonia being a key landfill leachate indicator) indicate shallow groundwater quality is improving. The three deep wells installed in 2006 indicate the leachate plume in the deep parts of the aquifer is also improving but is taking longer (Graph-02) as flushing is lower at deeper levels in the aquifer (i.e. below sea level and across the groundwater divide).

7.2 SURFACE WATER

Surface water sampling was undertaken in May, August, November 2013 and February 2014. Samples were collected from two locations (ML-2 and ML-5, permission for accessing other locations was denied by site owner) locations along Blue Angle Creek (Figure 2).

Samples were not collected from ML-1, ML-3 or ML-4 due to restricted access (i.e. land is owned by Cleary Bros- access denied for sampling); therefore upstream water quality is relatively unknown and may be degraded due to farming and areas of acid soils. Sample locations, ML-1 ML-2 (downstream) and ML-5 (midstream) are not considered appropriate to assess water quality impacts from the landfill and potential upstream sources. All analytical results for surface water monitoring points ML-2 and ML-5 are presented in Table SW-1.

It is not known if surface water sampling was performed during wet or dry periods (note: Based on rainfall records - Appendix B - February 2014 was likely to be a wet monitoring event, May and November experienced moderate rainfall, whilst August 2013 was likely to be a dry monitoring

-e₂w

event). Blue Angle Creek is tidally influenced and has a marine water influence at all sample locations, as shown by the broad range of TDS results (i.e. fresh to saline, Table SW-1).

The surface water monitoring data at upstream/downstream locations is variable and likely to reflect a combination of tidal sampling regimes and inputs from the broader catchment area. (e.g. samples should be coordinated with the tide so that both creek samples are collected during a runout tide when the maximum amount of groundwater (& potential leachate) discharges into the creek).

7.2.1 Field Parameters

7.2.1.1 pH (field) and Redox

The pH was similar at ML-2 and ML-5, and ranged from pH 6.4 to 7.2. Sampling results indicate that pH in Blue Angle Creek differs little from upstream (ML-5: pH 6.4 to 7.2) to downstream (ML-2: pH 6.5 to 7.2).

Redox was only measured in August 2012 during 2013-2014 monitoring period, at ML-2 (58 mV) and ML-5 (62 MV).

7.2.1.2 Total Dissolved Solids (TDS and EC)

Restricted access has limited the assessment of upstream and downstream locations. Previous monitoring period indicated that between August and November 2008, the concentrations of TDS at the Blue Angle Creek upstream location (ML-1) were less than those recorded downstream (ML-2). The TDS concentration upstream of the flood gates (ML-4) was less than those recorded downstream of the flood gates (ML-1 and ML-2).

Samples collected between May 2013 and February 2014 at the downstream location ML-2 were brackish to saline⁷ (TDS = 2,950 to 28,800 mg/L), while samples from the midstream location ML-5 were slightly fresher (TDS = 692 to 2,510 mg/L). The surface water samples are located in an area of the creek that is known to be influenced by tides. The presence of mangroves and other aquatic plants also reflects the typically saline water in the lower section of Blue Angle Creek.

Groundwater samples collected from MW-9, MW-10 and MW-11 were slightly less saline than surface water samples collected from Blue Angle Creek and more saline than samples from all other groundwater monitoring wells sampled between May 2013 and February 2014. This data indicates that tidal waters from Crooked River Estuary can influence water quality and salinity of the 3 wells (MW-9, MW-10 and MW-11). Higher salinity reduces (more marine water) the possibility of detecting leachate derived from the landfill.

R001 Gerroa Annual Report ESDPES 10-3-14

⁷ Possibly reflecting collection of samples during high and low tide and stormwater runoff and rainfall

7.2.2 Nutrients

7.2.2.1 Nitrogen

Concentrations of ammonia in the surface waters collected from Blue Angle Creek have been, and continue to vary with time (Graph-06 and Table 7.2.2).

Sample ID	Minimum (mg/L)	Maximum (mg/L)	Trend	Comments & Trigger 10% Exceedance of Ammonia
ML-1	-	-	-	No site access
ML-2	0.44 (Feb 2014)	3.19 (Aug 2013)	Variable, generally decreasing	All below ANZECC guidelines, one exceedance of trigger value (1.38 mg/L)
ML-3	-	-	-	No site access
ML-4	-	-	-	No site access
ML-5	0.52 (Nov 2013)	2.6 (Aug & Nov2012)	Variable, generally decreasing	All below ANZECC guidelines, two exceedances of trigger value (2.38 mg/L)

Table 7.2.2: Surface Water Ammonia Trends – May 2013 to February 2014

Note: ML-5 was sampled for the first time in four years in November 2008.

Samples collected from ML-2 reported ammonia concentrations between 0.44 and 3.19 mg/L (Table SW-1). ML-5, located midstream in Blue Angle Creek in proximity to groundwater monitoring wells MW-9, MW-10 and MW-11 ranged from 0.52 to 2.6 mg/L. Sampling at ML-5 (resumed in November 2008 but had not been sampled since October 2004) indicates that the water quality is variable (Table SW-1).

The highest ammonia concentration in surface waters (3.19 mg/L) was reported from ML-2 in August 2013. Restricted access to upstream locations (ML-1, ML-3 and ML-4) limits conclusions regarding impacts due to the absence of upstream sample locations. Elevated ammonia in surface water compared to groundwater wells in proximity to the creek (MW-9, MW-10, and MW-11) indicates that sources of ammonia also occur from the upstream catchment area (agricultural land).

Concentrations of TKN exceeded the ANZECC (2000) guidelines for fresh and marine waters for all samples collected along Blue Angle Creek. The highest concentration was reported at the downstream location (ML-2, 3.6 mg/L in August 2013).

Increases in nitrogen from upstream and downstream of the landfill have been observed during previous monitoring periods. While these increases may be attributable to the discharge of ammonia-rich groundwater from the landfill, other sources (random) of nitrogen input such as runoff from sub-catchments and nutrients bound in sediments cannot be discounted. It is also possible that poor quality estuarine waters from Crooked River move up Blue Angle Creek during tidal cycles.

Interpretation of the nutrients into surface water bodies from the landfill is complicated by the sampling regime (i.e. sampling at various tides) and other potential sources of nitrogen. The fluctuating flow regime near Blue Angle Creek and wet weather events may reduce the potential for landfill leachate to impact the creek.

Total organic carbon (TOC) was not measured during the 2013 to 2014 monitoring period.

As stipulated in the revocation notice, ammonia concentrations greater than 10% above ammonia concentrations reported in Table SW-1 of *Kiama Municipal Council, Gerroa Waste Disposal Depot - Annual Groundwater and Surface Water Monitoring Report - August 2006 to May 2007*, dated 17 August 2007 are to be highlighted (Appendix C). Exceedances greater than 10% above ammonia were noted at ML-2 (trigger value = 1.38 mg/L) for August 2013 (3.19 mg/L), and ML-5 (trigger value = 2.38) for August 2013 and February 2014. Based on the low ammonia results from monitoring wells (MW-9, MW-10, MW-11, Graph 1) in proximity to the creek, high ammonia concentrations in the surface water may be attributed to potential upstream sources (agriculture) or poor quality estuarine water (tidal or mouth closure).

7.2.2.2 Total Phosphorous (TP)

Concentrations of TP from Blue Angle Creek were analysed from all samples collected in May, August, November 2013, February 2014 (Table SW-1).

Previous levels (2011-2012 monitoring period) reported an increase in TP concentrations, which exceeded the IIWL⁸ ANZECC 2000, (fresh 0.05 mg/L, marine 0.025 mg/L) at ML-2 and ML-5 for all sampling rounds. The 2012-2013 monitoring period reported an variable increase in TP concentrations which exceeded the IIWL⁸ ANZECC 2000, (fresh 0.05 mg/L, marine 0.025 mg/L) at ML-2 (0.05 mg/L, May 2012 and 0.13 mg/L, February 2013) and ML-5 (1.95 mg/L, February 2013). The 2013-2014 monitoring period reported two exceedences of the ANZECC 2000 guidelines for ML-2 in May 2013 & February 2014 (0.09 mg/L and 0.12 mg/L respectively) and one exceedence in ML-5 in 2013 (0.06 mg/L).

TP concentrations at ML-2 ranged from 0.01 mg/L (November 2013) to 0.12 mg/L (February 2014) and continue to show a variable increasing trend.

ML-5 reported all TP concentrations ranged from below $LOR^9 0.01 \text{ mg/L}$ (November 2013) to 0.06 mg/L (May 2013) in the 2013-2014 reporting period, indicating a variable increase in concentrations compare to 2012-2013 monitoring period (ranged from <0.01 to 0.13 mg/L) (Graph-07).

R001 Gerroa Annual Report ESDPES 10-3-14

⁸ ANZECC (2000) Indicative Interim Working Levels (IIWLs).

⁹ Laboratory Level of Reporting (LOR)

7.2.3 Bacteriological Contaminants

Surface water sample locations (ML-2 and ML-5) were analysed for thermotolerant (faecal) coliforms and enterococcus coliforms on 30 August 2013 (Table SW-1).

Both samples results in August 2013 for enterococcus were below ANZECC (2000) fresh and marine guidelines (35 CFU/100 mL), downstream sample ML-2 reported 20 CFU/100 mL and midstream sample ML-5 reported ~16 CFU/100 mL. Both locations are significantly lower than 2010-2011 monitoring period (ML-2, 1300 CFU/100 mL and ML-5, 1200 CFU/100 mL, November 2010) and are similar to 2011-2012 (ML-2, 18 CFU/100 mL and ML-5, 8 CFU/100 mL) and 2012-2013 (ML-2, 4 CFU/100 mL and ML-5, 15 CFU/100 mL)

Surface water samples reported levels of thermotolerant (faecal) coliforms below ARMCANZ (2000) guidelines for marine and fresh water ecosystems at ML-2 (24 CFU/100 mL) and ML-5 (~6 CFU/100 mL). Previous sampling results (November 2010) were above ARMCANZ guidelines, however the 2013-2014 have decreased to similar results prior to November 2010, 2011-2012, and 2012-2013.

Multiple sources of coliforms exist in the surface water system, with the capped landfill representing an insignificant contribution, due it's to distance from the creek (i.e. local fauna and flora, farms) and filtering in the aquifer.

7.2.4 Inorganic Contaminants

Dissolved organic carbon (DOC) concentrations were not analysed during the 2012-2013 monitoring period.

Surface water samples from August 2013 reported elevated concentrations of iron (ML-5, 1.99 mg/L) above ANZECC 2000 guidelines (0.3 mg/L). However, the ANZECC (2000) guideline for iron in fresh water is a low reliability IIWL.

No manganese concentrations were above ANZECC (2000) fresh water guidelines (low reliability IIWL).

7.2.5 Major Ions

Concentrations of major cations (sodium, potassium, alkalinity, magnesium, calcium) in the surface water (Blue Angle Creek) indicate domination of sodium (marine water influence), which is consistent with previous monitoring rounds.

7.2.6 Quality Assurance/Quality Control

Interpretive Quality Control Reports (QCI, Appendix A) provided by ALS (Sydney) of the surface and groundwater laboratory data were reviewed for the four sampling rounds (May, August,

R001 Gerroa Annual Report ESDPES 10-3-14

November 2013 and February 2014). No laboratory outliers or exceedances of holding times were noted during the 2013-2014 monitoring period.

8 LEACHATE PLUME AND LANDFILL REHABILITATION

The monitoring results have been used to assess potential impacts to fresh and marine aquatic ecosystems. The groundwater migrating from the former landfill discharges to Blue Angle Creek and Seven Mile Beach. The range of groundwater contaminants identified from the latest monitoring events indicates the GWDD is a source of leachate (mostly ammonia and TKN), total phosphorous and iron.

Ammonia is the primary landfill leachate indicator. However, the waste is also a source of dissolved salts, metals and organics associated with the dissolution of ions (predominantly calcium and bicarbonate).

Following the closure of the landfill in 2003 and remedial works completed by Council and E2W in February 2005, the production and migration of ammonia has significantly declined in the shallow and deep groundwater system (Graphs-01 & 02). Monitoring wells MW-3, MW-4 and MW-5 are considered to reflect the typical groundwater quality arising from the landfill rehabilitation (>80% decrease in ammonia).

The deep groundwater monitoring wells (MW-1D, MW-6D and MW-7D) installed in 2006 show water quality improvements but at a slower rate relative to the shallow groundwater. The quality of the deeper groundwater system would take longer to improve due to the slower groundwater flushing at depth. However, since August 2009 the ammonia concentrations in deep wells show a clear decreasing trend (Graph-02).

The most significant contaminant is ammonia-nitrogen, with a remnant plume extending in both north-west and south-east directions reflecting flows either side of the groundwater divide. Prior to rehabilitation, leachate originating from the landfill and night soil depot infiltrated the shallow aquifer, as well as migrating under the predominant groundwater flow regime towards Seven Mile Beach and Blue Angle Creek, respectively.

E2W consider the leachate plume in the shallow/deep groundwater is shrinking due to a decrease in leachate generation as well as from natural attenuation processes (including dilution). The time series trends show that significant groundwater quality improvements occur after approximately 5 years.

Previous results (2008-2009, 2009-2010, 2010-2011, 2011-2012, 2012-2013) results from the three groundwater wells located along Blue Angle Creek (MW-9, MW-10 and MW-11) indicate ammonia concentrations below the ANZECC (2000) guidelines (with the exception of MW-11 in 2009-2010, Table GW-1). Recent 2013-2014 results continue to report a decrease in ammonia, which are below ANZECC (2000) guidelines (MW-11).

The landfill rehabilitation conducted between July 2004 and February 2005 has resulted in a measurable improvement in the shallow groundwater quality at GWDD. While ammonia remains

elevated in the deep groundwater, E2W consider that water quality will continue to improve in shallow/deep aquifer due to reduced leachate generation and natural attenuation.

The surface water results from the 2013-2014 monitoring period reported one guideline exceedences for ML-2 in August 2013 (3.19 mg/L) and two exceedence in ML-5 in August 2013 and February 2014 (2.6 mg/L, and 2.6 mg/L respectively).

8.1 ECOLOGICAL ISSUES

Groundwater migrating from the landfill to Seven Mile Beach is diluted by the dynamic processes operating in this environment. Contaminants contained within this discharge may be diluted and dispersed via biological, chemical and physical processes occurring at the groundwater/salt water interface. Plant uptake of excess nutrients in the groundwater may also occur as the depth to groundwater becomes shallower as it approaches the beach.

The effect of nutrient-impacted groundwater discharging to Blue Angle Creek and/or Crooked River Estuary is unclear and difficult to ascertain given the variability, dynamic environment, and multiple nutrient sources in the catchment area.

Potential impacts of landfill leachate to Blue Angle Creek would depend on the groundwatersurface water interaction, climate and the rehabilitation works. Results from MW-9, MW-10 and MW-11 (monitoring wells adjacent to the creek) indicate a reduction in ammonia (Graph-01). Previously, MW-11 had a history of variable ammonia concentrations; however since May 2010 ammonia has remained below ANZECC guidelines.

E2W interpreted that some nitrogen-impacted groundwater would discharge to the creek (and consequently to the estuary), however the extent of attenuation of the nitrogen plume prior to discharge is unclear. Attenuation is likely to occur through a combination of dilution, mixing of groundwater from the north of the creek, flows and tidal movements within the creek and estuary and oxidation of the ammonia to nitrate/nitrite and nitrogen gas.

9 CONCLUSIONS

Surface and groundwater monitoring was completed at the GWDD by ALS in May, August, November 2013 and February 2014 for the EPL (2014). The data has been assessed by E2W to identify potential impacts to the groundwater and surface water systems. The following conclusions are offered:

- The rehabilitation of the landfill mound and night soil depot (completed February 2005) has produced a measurable improvement to the local groundwater quality. The improvement to local surface water quality is not clear.
- Groundwater at the landfill site is directed towards Blue Angle Creek (base-flow discharge) and Seven Mile Beach (via a groundwater salt water interface).

- The key landfill indicator (ammonia-nitrogen) shows a decreasing/stabilising trend in several shallow wells (MW-5 with exception of November 2013= 5.88 mg/L, MW-4, MW-5, MW-1S, MW-6S and MW-7S) and deep wells (MW-1D, MW-6D, MW-7D) located next to the landfill mound and former night soil deposit.
- Elevated concentrations (above ANZECC 2000) of nutrients, in particular ammonia, continue to be detected in the shallow (MW-7S) and deep groundwater (MW-6D, MW-7D which are above ANZECC (2000) guidelines. Concentrations of ammonia were reported below ANZECC (2000) for the onsite wells MW-1S, MW-3, MW-4, MW-5 except for Nov 2013, MW-6S and offsite wells MW-9, MW-10, and MW-11. Previously elevated (above ANZECC 2000) ammonia concentrations were reported at MW-11 during 2009-2010 reporting period (February 2010 = 5.35 mg/L, exceeded the 20% trigger value = 2.96 mg/L), but substantially decreased to below LOR in May, August and November 2010, remained below 0.42 mg/L in 2012-2013, and fallen below 0.07 mg/L in 2013-2014. Catchment characteristics, climate and tide regime all effect water quality in Blue Angle Creek and the adjacent wells (MW-9, MW-10 and especially MW-11).
- Concentrations of total phosphorous (TP) in the shallow/deep groundwater is generally variable, with a variably increasing trend at MW-4. Variable and possibly increasing TP is interpreted at two shallow wells (MW-4, MW-6S) and two deep wells (MW-6D, MW-7D, immediately down-gradient and north of the former night soil deposit).
- Nutrient (ammonia) concentrations within surface water samples collected at downstream locations (Blue Angle Creek) are variable and similar to previous years. An exceedance (greater than 10% above ammonia values in Appendix C) was noted at ML-2 for August 2013 (3.19 mg/L) and ML-5 for August 2013 and February 2014 (2.6 mg/L and 2.6 mg/L respectively). Based on the low ammonia results from monitoring wells (MW-9, MW-10, MW-11, Graph 1) in proximity to the creek, high ammonia concentrations in the surface water may be attributed to potential upstream sources (agriculture) or poor quality estuarine water (tidal-and estuary mouth closures).
- Total phosphorus (TP) concentrations at ML-5 ranged from 0.01 to 0.12 mg/L in 2011-2012, however during 2012-2013, TP slightly increased and ranged from <0.01 to 1.95 mg/L. TP in the 2013-2014 monitoring round is comparable to that reported in 2011-2012 (0.01 mg/L to 0.06 mg/L). TP in surface water is generally variable, with potentially increasing trends at ML-2 and ML-5 (downstream relative to the landfill but no upstream sample locations are available for comparing the results). It is likely that water quality in Blue Angle Creek reflects other nutrient sources in the catchment as well as potential minor input from the GWDD.
- All other water quality indicators were consistent with the previous monitoring results.

The nutrient concentrations (particularly ammonia) in the shallow and deep groundwater are likely to continue to decrease over time (note: phosphorous may take longer to decline as it is likely to adsorb/retarded by the aquifer matrix). The landfill capping system reduces rainfall infiltration into the buried waste (reduces leachate generation) and diverts runoff from the 3 ha capped mound into the aquifer, causing dilution and attenuation of the residual leachate.

Monitoring of surface and groundwater conditions at the GWDD following the completion of landfill remediation has provided beneficial data regarding the effectiveness of the rehabilitation works. It is interpreted that the "surface and shallow" groundwater quality (pending contribution of other sources) may meet the ANZECC (2000) guidelines in the next few years (2015).

The deep groundwater quality (below 3 m AHD) below the landfill mound would require a longer time frame (3+ years) to show improvements due to lack of flushing in the basal parts of the aquifer. Based on recent groundwater trends, it is interpreted that the deep groundwater may take another 3 years to meet the ANZECC (2000) guidelines for ammonia (key landfill leachate indicator).

9.1 **RECOMMENDATIONS**

In order to improve the quality of monitoring at the site, E2W recommends that the following be incorporated into subsequent sampling rounds:

- Obtain survey details (RL at top of PVC) for the 6 piezometer wells (MW-1S/D, MW-6S/D and MW-7S/D) to allow assessment of reduced water levels and hydraulic gradients.
- Collect and analyse at least one quality control sample (e.g. blind duplicate sample) as per NEPM (1999) guidelines.
- Field measurements (pH, EC, DO, EH and T) should be conducted during site sampling using calibrated instruments (not by laboratory).
- Assess quality assurance and control from laboratory and perform re-analyses if elevated results are obtained (verification purposes, note: E2W will be review LAS QCI reports in the future and receive laboratory reports on quarterly basis).
- Perform analysis for reactive phosphorus (total & reactive) and filter samples prior to analysis, especially where TP is elevated (MW-4, MW-6S, MW-6D, MW-7D).
- Review tidal charts and climate prior to surface water sampling. Sample collection should be co-ordinated with the tide so that both creek samples are collected during a low run-out tide when the maximum amount groundwater discharges into the creek.
- Further investigate alternate sample locations to allow assessment of upstream water quality and the downgradient impacts associated with the landfill (i.e. replacement of previous locations @ ML-1, ML-3 and ML-4. It is noted that alternate locations are within private land "Cleary Bros site" and access has been denied).
- The proposed groundwater and surface water monitoring program for the GWDD is summarised in Table 3.1. The sampling methods are presented in Tables 1 and 2 of the Revocation of Licence (DECC, 29 May 2008).
- Discontinue bacteriological monitoring of surface water samples.
- The decommissioned sludge pond was backfilled with compacted clay (validated ENM) by KMC (late 2012- i.e. photographs/documentation/date recommended to verify works).

10 LIMITATIONS

Earth2Water Pty Ltd has prepared this report for the use of Kiama Municipal Council in accordance with the standard terms and conditions of the consulting profession. This report is prepared in accordance with the scope of work and for the purpose outlined in the proposal. The methodology adopted and sources of information used by E2W are outlined in this report.

E2W has made no independent verification of this information beyond the agreed scope of works and E2W assumes no responsibility for any inaccuracies or omissions.

This report was prepared in February and March 2014 and is based on the information reviewed at the time of preparation. This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

The precision with which conditions are indicated depends largely on the frequency and method of sampling and the uniformity of conditions as constrained by the project budget limitations. The behaviour of groundwater and some aspects of contaminants in soil and groundwater are complex. Our conclusions are based upon the analytical data presented in this report and our experience.

Where conditions encountered at the site are subsequently found to differ significantly from those anticipated in this report, E2W should be notified of any such findings and be provided with an opportunity to review the recommendations of this report.

11 REFERENCES

Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*.

Australian Water Technologies (2000). Surface Water and Groundwater Monitoring Program, Gerroa Waste Disposal Facility.

DUAP (1996). EIS Practise Guideline: Landfilling

Hazelton (1992). Soil Landscapes of the Kiama 1:1,000,000 Sheet, Department of Conservation and Land Management.

Landfill Management Services Pty Ltd (2003). Landfill Gas Evaluation Gerroa Landfill. NSW EPA (1996) Environmental Guidelines: Solid Waste Landfills.

DECC NSW (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Climate Change, Sydney.

R.M. Koerner and T-Y.Soong, (1998). Analysis and Design of Veneer Cover Soils. Proceedings of 6th International Conference on Geosynthetics, Vol, pp.1-23, Atlanta, Georgia, USA.

URS Australia Pty Ltd (2002). Annual Surface and Groundwater Monitoring Report for the Gerroa Waste Disposal Facility, July 2001 to June 2002.

URS Australia Pty Ltd (2002). Annual Surface and Groundwater Monitoring Report for the Gerroa Waste Disposal Facility, July 2002 to June 2003.

Tables

Sample ID	ANZECO	C, 2000	MW1S	MW 1S	MW 1S	MW1S	MW1S	MW 1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S	MW1S MW	D MW 1	D MW 1D	MW1D	MW1D	MW 1D	MW1D	MW1D	MW1D M	V1D MW1	D MW10	MW1D	MW1D	MW1D	MV
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14 21/5	10 17/8/1	0 30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12 10/	8/12 21/11/ [,]	2 18/2/13	3 31/5/13	30/8/13	27/11/13	7/2
Ground Level (m AHD)			NA												-	-	-	NA											-	-	-	
Depth to Groundwater (m AHD)															-	-	-												-	-	-	
Groundwater depth (m bTOC)			3.74	3.52	2.88	3.3	3.25	3.17	3.53	3.86	3.33	3.6	3.9	3.75	3.25	3.16	374	Dry - no sample 3.6	2 3.39	2.77	3.16	3.12	3.04	3.5	3.73	3.2 3	48 3.77	3.6	3.1	3	3.64	3
Height of Stick up (m)			0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65		2 0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62 0	62 0.62	0.62	0.62	0.62	0.62	0.
Groundwater Depth (mbgl)			3.09	2.87	2.23	2.65	2.6	2.52	2.88	3.21	2.68	2.95	3.25	3.1	2.6	2.51	3.09	3	2.77	2.15	2.54	2.5	2.42	2.88	3.11	2.58 2	86 3.15	2.98	2.48	2.38	3.02	3.2
Field Parameters																																
oH (field)	6.5-8.0 (a)	8-8.4 (a)	6.8	6.9	6.7	6.5	6.80	6.70	7.10	7.00	6.60	6.9	7.4	7	6.40	6.5	6.8	6.9	7.2	6.8	7	7.30	7.60	7.60	7.50	7.80	.5 7.5	7.5	7.30	7.5	7.5	7.
Temperature (T deg C)			-	-	-	-	-	-	-	-	-				-	-	-	-		-	-	-	-	-	-	-			-	-	-	
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		1.95	1.41	0.602	0.49	0.51	0.44	0.47	0.40	0.50	<1	0.464	1.1	0.41	0.42	0.548	2.4	2.43	2.22	1.95	1.72	11.00	1.26	0.99	0.59	:1 0.657	0.695	0.63	0.624	0.624	0.5
Salinity (ppt)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	
	8.5-11.0 (a)	9.0-10.0 (a)	1.39	2.41	1.58	1.8	1.62	2.49	2.02	2.21	1.62	0.8	1.73	1.48	1.57	2.51	0.72	- 2.5	6 2.59	1.67	2.31	1.54	2.51	1.72	2.60	5.30 2	.2 1.98	2.6	1.97	1.62	2.50	1.8
Dissolved Oxygen (%)			-	-	17.10	-	-	-	-	-	-	8.2			-	-	-	-		18.20	-	-	-	-	-		2.2		-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	
Redox Potential (mV)			-	-	-	-	-	-52.2	-	-	-	<0.1			-	-57	-	-	-	-	-	-	-91.6	-	-	- <).1		-	-78		
Comments			nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc nc	nc	-	-	-	-
Laboratory Analyses																																
Major lons (mg/L)																																
Sodium			-	-	54	-	-	21	-	-	-	22			-	42	-	-	-	239	-	-	118	-	-	- 2	2		-	22	-	
Potassium			-	-	4	-	-	2	-	-	-	3			-	2	-	-	-	44	-	-	15	-	-	-	1		-	15	-	
Calcium			-	-	41	-	-	39	-	-	-	52			-	24	-	-	-	115	-	-	68	-	-	-	64		-	62	-	
Magnesium			-	-	19	-	-	10	-	-	-	9			-	8	-	-	-	64	-	-	27	-	-		3		-	24	-	·
Chloride			-	-	113	-	-	38	-	-	-	34			-	51	-	-		488	-	-	146	-	-		2		-	20		<u> </u>
Alkalinity (as CaCO3)			386	291	142	176	150	126	165	147	164	159		362	100	128	163	61	494	231	345	297	316	322	363		88 293	292	284	316	298	25
Bicarbonate			386	291	142	176	150	126	165	147	164	159		362	100	128	163	- 61	494	231	345	297	316	322	363		88 293	292	284	316	298	25
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	21.00	:1 <1	<1	<1	<1	<1	<
Sulphate (SO4)			-	-	8	-	-	<1	-	-	-	6			-	3	-	-	-	160	-	-	34.00	-	-	-	6		-	6		<u> </u>
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-			-	-		·
Total Dissolved Solids (TDS)			1300	982	430	416	436	386	350	250	390	346		640	362	309	442	134	0 1330	1420	1160	940	700	772	580	340 2	64 418	320	372	328	328	30
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-			-	-		
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-
Heavy Metals (mg/L)															-																	
Iron (filtered)	0.3 (1)		-	-	13.9	-	-	33.2	-	-	-	26.2			-	29.0	-	-	-	9.93	-	-	0.10	-	-	- <(.05		-	<0.05	-	-
Manganese	1.90		-	-	0.046	-	-	0.05	-	-	-	0.051			-	0.050	-	-	-	0.036	-	-	0.008	-	-	- 0.0	01		-	0.010	-	-
Nutrients (mg/L)																																
Nitrate (NO3 as N)	0.7 (7)		0.26	0.04	0.02	0.21	0.02	0.02	<0.01	<0.01	<0.01	0.12		<0.10	<0.01	<0.01	<0.01	1.3	6 4.91	0.86	0.76	1.55	2.39	1.79	<0.01	1.57	2 2.13	2.38	1.06	0.97	0.03	0.1
Nitrite (NO2 as N)	X /			<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		<0.10	< 0.01	<0.01	< 0.01	0.0			0.02	0.08	0.01	0.06	< 0.01		.01 <0.01			0.07	< 0.01	<0.
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)		< 0.01	0.05	0.05	0.04	0.06	0.02	< 0.01	0.05	< 0.01		0.13	0.34	0.28	0.21	22.			6.67	2.56	0.12	2.15	3.16		09 0.17	0.26	0.27	2.88	4.13	2.8
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	4.4	46.8	2.6	1.9	2.50	0.90	1.10	2.20	1.2	1		1.8	1.9	1	4.6	- 45.			9.6	4.60	1.70	3.30	4.00		4 1.9	1.2	1.10	3.4	4.4	3.
Dissolved Organic Carbon			-	-	38	-	-	31	-		-	26			-	58	-	-		22	-	-	12	-	-	-	6		-	15		
Fluoride (Electrode)			_	_	0.3	-	-	0.2	_	_	_	0.3			-	0.2	-	-		<0.1	_	_	0.2	_	-	- (.1		-	0.2	-	
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.61	49.8	0.32	0.88	0.31	0.38	0.5	0.66	0.33	0.52		0.72	0.38	0.31	0.86	0.1			0.35	0.03	0.15	0.04	0.26		18 0.16	0.02	0.03	0.02	0.44	0.
Biological (CFU/100 ml)	0.00 (7)	0.020(1)		-7.0	0.02	0.00	0.01	0.00	0.0	0.00	0.00	0.02		U.1 Z	0.00	0.01	0.00	0.1	0.07	NO.01	0.00	0.00	V. I V		0.20	0.00 0		0.02	0.00	0.02	<u> </u>	
																															1	1

Exceeds ANZECC (2000) guidelines marine/fresh water ecosystems Focus of this monitoring report nc = no comment NA = r

35

NA = not available

Notes:

Trigger value is an indicative interim working level only (IIWL).
 Ammonia trigger at pH = 8.0, for a 95% protection, corrected for average pH = 7.3.
 Trigger value for oxides of Nitrogen (NOx) for lowland rivers in NSW.
 Trigger value for oxides of Nitrogen (NOx) for marine ecosystems in NSW.
 Trigger value for total Nitrogen in lowland rivers in NSW.

Sample ID	ANZECO	C, 2000	MW3	MW 3	MW 3	MW3	MW3	MW 3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3	MW3
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14
Ground Level (m AHD)			4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Depth to Groundwater (m AHD)			0.37	0.59	1.18	0.83	0.87	0.95	0.48	0.25	0.79	0.49	0.25	0.40	0.88	0.97	0.35	0.12
Groundwater depth (m bTOC)			4.08	3.86	3.27	3.62	3.58	3.5	3.97	4.2	3.66	3.96	4.2	4.05	3.57	3.48	4.1	4.33
Height of Stick up (m)			0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Groundwater Depth (mbgl)			3.63	3.41	2.82	3.17	3.13	3.05	3.52	3.75	3.21	3.51	3.75	3.6	3.12	3.03	3.65	3.88
Field Parameters																		
pH (field)	6.5-8.0 (a)	8-8.4 (a)	7	7.1	7	7.2	7.50	7.50	7.80	7.40	7.50	7.3	7.5	7.4	7.20	7.6	7.4	7.4
Temperature (T deg C)	0.0 0.0 (u)	0 0.1 (u)	-	-	-	-	-	-	-	-	-	7.0	7.0	1.1	-	-	-	-
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		0.74	0.74	0.754	0.48	0.56	0.70	0.47	0.46	0.39	<1	0.633	0.631	0.51	0.704	0.760	0.787
Salinity (ppt)	0.120 2.2 (u)		-	-	-	-	-	-	-	-	-		0.000	0.001	-	-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9 0-10 0 (a)	3	1.91	2.67	1.68	4.50	2.07	1.58	1.76	2.66	0.7	1.75	1.94	1.68	1.84	1.54	2.36
Dissolved Oxygen (%)		<u></u>	-	-	28.20	-	-	-	-	-	-	7			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	_	_	-	_	-	_	_		_	#				-	_	-
Redox Potential (mV)		0.0 10 (u)	-	-	-	-	-	-81.6	-	-	-	<0.1			-	-137	-	-
Comments			nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	nc	nc	nc	nc
Laboratory Analyses																		
Major lons (mg/L)																		
Sodium			-	-	71	-	-	37	-	-	-	27			-	49	-	-
Potassium			-	-	3	_	-	2	-	-	-	3			-	3	-	-
Calcium			-	-	90	_	-	88	-	-	-	102			-	79	-	-
Magnesium			-	-	6	-	-	8	-	-	-	9			-	8	-	-
Chloride			-	-	127	-	-	53	-	-	-	130			-	92	-	-
Alkalinity (as CaCO3)			329	274	215	171	125	259	193	235	165	183	295	270	238	227	216	194
Bicarbonate			329	274	215	171	125	259	193	235	157	183	295	270	238	227	216	194
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	8.00	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO4)			-	-	28	-	-	3	-	-	-	<1			-	6	-	-
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Dissolved Solids (TDS)			384	436	484	318	390	414	322	340	238	496	432	268	298	363	494	443
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-
Heavy Metals (mg/L)																		
Iron (filtered)	0.3 (1)		-	-	14.3	-	-	7.55	-	-	-	9.44			-	6.86	-	-
Manganese	1.90		-	-	0.109	-	-	0.07	-	-	-	0.069			-	0.064	_	-
Nutrients (mg/L)			<u> </u>	ļ			<u> </u>	••••			<u> </u>		<u> </u>					
Nitrate (NO3 as N)	0.7 (7)		0.1	0.02	0.04	0.21	0.07	0.02	<0.01	<0.01	0.02	0.09	0.73	5.59	0.6	<0.01	0.02	0.21
	0.7 (7)		<0.01		<0.04	<0.01		<0.02		<0.01	<0.02	<0.03	0.04	0.05	0.02		<0.02	<0.21
Nitrite (NO2 as N)	1.00.(0)	201 (0)		<0.01 0.87	0.66	0.26	<0.01		<0.01							<0.01		
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	0.62				0.14	0.42	0.29	0.23	0.04	0.35	0.44	7.78	0.93	0.14	0.25	0.11
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	1.1	1.9	1.7	0.6	0.50	0.90	0.60	0.80	0.4	0.5	2.2	7.8	1.5	0.4	0.7	0.4
Dissolved Organic Carbon			-	-	11	-	-	10	-	-	-	6			-	12	-	-
Fluoride (Electrode)			-	-	<0.1	-	-	0.1	-	-	-	0.1	0.40	0.40	-	0.1	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.14	0.22	0.31	0.18	0.21	0.62	0.16	0.14	0.22	0.19	0.42	0.13	0.15	0.16	0.33	0.27
Biological (CFU/100 ml)						[
Enterococcus MF	35 (8)	35 (8)	-	-	-	-	-	-	-	-	-				-	-	-	-
Note:		^ -	1															
Exceeds ANZECC (2000) gu	Idelines	35	1															

NA = not available

erroa Waste Dispo	osal Dep	oot																																
nple ID	ANZEC	C, 2000	MW4	MW 4	MW 4	MW4	MW4	MW 4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW4	MW5	MW 5	MW 5	MW5	MW5	MW 5	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW5	MW
d Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/1
und Level (m AHD)			4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55	4.55
th to Groundwater (m AHD)			0.88	1.08	1.69	0.99	1.31	1.41	0.98	0.76	1.23	0.99	1.04	1.04	1.1	1.43	0.58	0.37	0.6	0.81	1.32	1	1.03	1.11	0.72	0.5	0.96	0.85	0.73	0.95	1.24	1.27	0.76	0.56
undwater depth (m bTOC)			4.36	4.16	3.55	4.25	3.93	3.83	4.26	4.48	4.01	4.25	4.2	4.2	4.14	3.81	4.66	4.87	4.15	3.94	3.43	3.75	3.72	3.64	4.03	4.25	3.79	3.9	4.02	3.8	3.51	3.48	3.99	4.19
ght of Stick up (m)			0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
undwater Depth (mbgl)			3.91	3.71	3.1	3.80	3.48	3.38	3.81	4.03	3.56	3.80	3.75	3.75	3.69	3.36	4.21	4.42	3.95	3.74	3.23	3.55	3.52	3.44	3.83	4.05	3.59	3.7	3.82	3.6	3.31	3.28	3.79	3.99
d Parameters																																		
(field)	6.5-8.0 (a)	8-8.4 (a)	6.9	6.8	6.4	6.4	6.80	6.80	6.90	6.90	6.80	7	6.8	7	6.30	7	7.1	7	7.8	7.7	7.2	7.6	8	8	8	7.9	8.1	7.7	7.7	7	7	7.7	7	7.3
nperature (T deg C)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
ctrical Conductivity (mS/cm)	0.125-2.2 (a	1)	0.75	0.81	0.468	0.47	0.73	0.68	0.72	0.70	0.58	<1	0.7	0.829	0.44	0.47	0.632	0.683	0.52	0.51	0.414	0.31	0.44	0.31	0.38	0.345	0.36	<1	0.477	0.297	0.13	0.427	0.395	0.42
nity (ppt)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
	8.5-11.0 (a)) <u>9.0-10.</u> 0 (a) 2.55	2.32	1.46	2.21	1.78	3.09	2.64	2.34	3.22	1.1	2.48	1.7	2.26	2.49	2.32	1.97	2.81	3.08	2.14	2.22	4.15	2.88	2.15	2.32	2.41	0.9	1.77	1.8	1.52	1.62	2.13	2.0
solved Oxygen (%)			-	-	15.90	-	-	-	-	-	-	10.8			-	-	-	-	-	-	22.60	-	-	-	-	-	-	9.3			-	-	-	-
oidity (NTU)	6-50 (a)	0.5-10 (a)) –	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
lox Potential (mV)			-	-	-	-	-	-41.5	-	-	-	<0.1			-	-34	-	-	-	-	-	-	-	-25	-	-	-	<0.1			-	-147	-	-
nments			nc	nc	nc	nc	-	-	-	-	nc				-	-	-	-	nc	nc	nc	nc	-	-	-	-	nc				nc	nc	nc	nc
<u>oratory Analyses</u>																																		
or lons (mg/L)	1					1												· · · · · ·								-								
ium			-	-	14.00	-	-	12	-	-	-	13			-	13	-	-	-	-	16	-	-	7	-	-	-	9			-	15	-	-
assium			-	-	1.00	-	-	2	-	-	-	4			-	4	-	-	-	-	6	-	-	4	-	-	-	5			-	5	-	-
cium			-	-	91.00	-	-	109	-	-	-	117			-	68	-	-	-	-	53	-	-	44	-	-	-	60			-	54	-	-
Inesium			-	-	7.00	-	-	7	-	-	-	6			-	6	-	-	-	-	10	-	-	6	-	-	-	8			-	7	-	-
oride			-	-	23.00	-	-	25	-	-	-	14			-	13	-	-	-	-	30	-	-	13	-	-	-	15			-	34	-	-
alinity (as CaCO3)			274	303	234	151	248	282	251	296	293	323	315	227	137	215	276	284	142	144	142	120	177	128	147	144	126	179	198	112	172	170	158	15
arbonate			274	303	234	151	248	282	251	296	293	323	315	227	137	215	276	284	142	144	142	120	177	128	147	144	121	179	198	112	172	170	158	15
bonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	5	<1	<1	<1	<1	<1	<1	<1
ohate (SO4)			-	-	11.00	-	-	10.00	-	-	-	<1			-	10	-	-	-	-	14	-	-	4.00	-	-	-	7			-	4	-	-
(lab)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
al Dissolved Solids (TDS)			354	352	330	252	318	400	388	382	342	376	406	278	262	248	314	351	311	238	258	268	252	197	258	204	170	264	326	166	240	224	219	26
dness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	
al Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
vy Metals (mg/L)						1																					1				1			
(filtered)	0.3 (1)		-	-	21.40	-	-	17.10	-	-	-	7.98			-	1.61	-	-	-	-	<0.05	-	-	<0.05	-	-	-	<0.05			-	3.22	-	-
iganese	1.90		-	-	0.38	-	-	0.35	-	-	-	0.299			-	0.272	-	-	-	-	0.002	-	-	0.001	-	-	-	0.001			-	0.041	-	-
rients (mg/L)																																		
ate (NO3 as N)	0.7 (7)		0.26	0.03	0.06	0.31	0.39	0.04	0.1	0.04	0.07	0.19	0.05	0.15	0.36	0.09	0.03	0.02	5.15	10.4	4.44	0.96	0.44	0.14	0.02	1.08	1	1.44	0.03	1.81	<0.01	0.06	0.14	0.6
te (NO2 as N)	, í		<0.01	<0.01	<0.01	0.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.88	<0.01	<0.01	<0.01	0.22	0.21	0.14	0.15	<0.01	0.02	<0.01	0.12	0.18	0.1	0.08	0.03	0.01	0.01	<0.01	0.1
monia (NH3 as N)	1.88 (2)	2.84 (2)		0.44	0.22	0.91	1.16	0.58	0.64	0.68	0.18	0.1	0.15	0.44	1.86	< 0.01	0.37	0.22	0.08	<0.01	0.04	0.03	0.03	0.03	0.08	0.02	0.03	0.05	0.23	0.55	0.45	0.06	5.88	0.6
al Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	1.3	1.5	1.5	3.1	2.60	1.70	2.60	1.60	0.90	1.2	1.2	0.8	15.30	0.6		0.7	1.7	2.6	2.7	0.6	0.80	0.30	0.70	1.30	1	1.4	2	2.6	17	1.1	9	2.2
solved Organic Carbon			-	-	6	-		9		-	-	7			-	12	-	-	-		6	-	-	5	-	-	-	6	_		-	12	-	-
			-	-	0.20	-	-	0.2	-	_	-	0.2			-		-	-	-	_	0.1	-	-	0.20	-	-	_	0.2			_		-	_
	0.05(7)	0.025 (7)		2 93		1.56	1 24	-	7,98	1.72	1.31		3.99	0.9	2.4		2.17	1.6	0.09	0.11		0.12	0.1		0 1	0.08	0.03		0.22	0.74	1.23		1.83	1.0
	0.00(7)	0.020(1)	7.27	2.33	1.57	1.00	1.27	1 0.70	1.00		1.01	7.23	0.00	0.0	2 .7	0.00	<u> </u>		0.03	V.11		V.12	V .1	0.10	V. I	0.00	0.00	0.10	V.22	V./ T	1.20	0.00	1.00	1.0
	35 (8)	35 (8)	-	-		_	-	_	-		-				_		-	_	_	_ [_	-	-	_	-	_	_				-	_	_	-
	00(0)	00 (0)	_	_	_		_	_			_			1					_	_	_	_	_	_	_	_	_							
oride (Electrode) al Phosphorus (TP) logical (CFU/100 ml) erococcus MF e:	0.05 (7)	0.025 (7)	4.24	- 2.93 -	0.20 1.97	- 1.56 -	- 1.24 -	0.2 3.46	- 7.98 -	- 1.72 -	- 1.31 -	0.2 4.29	3.99	0.9	- 2.4 -	0.2 0.86	- 2.17 -	1.6	- 0.09 -	- 0.11 -	0.1 <0.01 -	0.12	- 0.1 -	0.20 0.13	- 0.1 -	- 0.08 -	- 0.03 -	0.2 0.13	0.22	0.74			- 0.1	- 0.1 -

35

Exceeds ANZECC (2000) guidelines marine/fresh water ecosystems Focus of this monitoring report nc = no comment NA = r

NA = not available

Sample ID	ANZEC	C. 2000	MW6S	MW 6S	MW 6S	MW6S	MW6S	MW 6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6S	MW6D	MW 6D	MW 6D	MW6D	MW6D	MW 6D	MW6D	MW6D	MW6D	MW6D	MW6D	MW6D	MW6D	MW6D	MW6D	MW6
Field Measurements																																		
Ground Level (m AHD)	Fresh	Marine	21/5/10 NA	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	//2/14	21/5/10 NA	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	(12/14
Depth to Groundwater (m AHD)			INA												-		-	-														-	-	
Groundwater depth (m bTOC)			4.69	4.57	4.45	4.48	4.43	4.39	4 71	4.88	4.5	4.7	4.66	4.43	4.35	4.4	4.77	4.94	4.95	4.82	4.19	4.73	4.7	4.65	4.97	5.12	4.77	4.94	4.91	4.69	4.62	4.65	5.04	5.2
Height of Stick up (m)			0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Groundwater Depth (mbgl)			4.09	3.97	3.85	3.88	3.83	3.79	4.11	4.28	3.9	4.1	4.06	3.83	3.75	3.8	4.17	4.34	4.25	4.12	3.49	4.03	4	3.95	4.27	4.42	4.07	4.24	4.21	3.99	3.92	3.95	4.34	4.5
Field Parameters		II	1.00	0.01	0.00	0.00	0.00	0.10		1.20	0.0		1.00	0.00	0.10	0.0		1.01	1.20	1.12	0.10	1.00	·	0.00	1.21		1.07		1.21	0.00	0.02	0.00	1.01	1.0
pH (field)	6.5-8.0 (a)	8-8.4 (a)	7.5	7.3	6.8	6.9	7.2	7	7.6	7.3	7.5	7.4	7.6	6.9	6.9	7.1	7.4	7.2	7	7	6.6	6.8	7.1	7.2	7.1	6.9	7	7 1	7.2	7.2	7.2	7.2	7.1	7.5
Temperature (T deg C)	0.0 0.0 (a)	0 0.4 (d)	-	-	-	-	-	-	-	-	-	1.7	7.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	7.1	1.2	1.2	-	-	-	-
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		0.52	0.65	0.502	0.37	0.569	0.511	0.504	0.504	0.475	<1	0.396	1.06	0.432	0.474	0.679	0.662	1.07	1.02	0.868	0.95	0.996	0.943	1.06	0.994	0.875	<1	0.798	0.86	0.867	0.896		0.476
Salinity (ppt)	<u>0.120 2.2 (u)</u>		-	-	-	-	-	-	-	-	-		0.000	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-		0.100	0.00	-	-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	1.74	2.56	2.63	2.19	2.18	2.94	1.9	1.82	2.29	1.2	2.4	2.58	1.46	1.9	2.13	2.33	2.61	2.37	1.34	1.45	2.21	2.71	2.12	1.55	1.45	1	1.81	2.67	1.77	1.58	1.88	1.94
Dissolved Oxygen (%)	<u></u>		-	-	27.70	-	-	-	-	-	-	11.8			-	-	-	-	-	-	14.10	-	-	-	-	-	-	10.6			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-	-	_	-	-	-	-	-	-	-				_	_	-	-
Redox Potential (mV)			-	-	-	-	-	-33.80	-	-	-	<0.1			-	-57	-	-	-	-	-	-	-	30.90	-	-	-	<0.1			-	13	-	-
Comments			nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	nc	nc	nc	nc
Laboratory Analyses													· · ·																			<u> </u>		·
Major lons (mg/L)																															. <u> </u>			
Sodium			-	-	8	-	-	44	-	-	-	14			-	30	-	-	-	-	18	-	-	20	-	-	-	15			-	16	-	-
Potassium			-	-	6	-	-	8	-	-	-	8			-	6	-	-	-	-	19	-	-	11	-	-	-	10			-	15	-	-
Calcium			-	-	80	-	-	41	-	-	-	75			-	75	-	-	-	-	120	-	-	142	-	-	-	120			-	141	-	-
Magnesium			-	-	9	-	-	7	-	-	-	6			-	7	-	-	-	-	14	-	-	16	-	-	-	11			-	10	-	-
Chloride			-	-	14	-	-	42	-	-	-	21			-	34	-	-	-	-	24	-	-	31	-	-	-	21				14	-	
Alkalinity (as CaCO3)			182	263	208	176	130	133	196	226	227	202	237	315	62	217	273	248	544	409	441	408	396	399	375	410	388	332	342	348	386	375	358	208
Bicarbonate			182	263	208	176	130	133	196	226	206	202	237	315	62	217	273	248	544	409	441	408	396	399	375	410	388	332	342	348	386	375	358	208
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO4)			-	-	26	-	-	40.00	-	-	-	18			-	34	-	-	-	-	8	-	-	27	-	-	-	33			-	107	-	
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-			10.0	-	-	-	-
Total Dissolved Solids (TDS)			314	350	308	332	280	334	328	342	286	314	372	616	286	309	364	356	473	504	496	542	534	586	694	636	460	484	508	436	454	496	475	280
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Heavy Metals (mg/L)		г		1]								1]																		
Iron (filtered)	0.3 (1)		-	-	5.59	-	-	3.13	-	-	-	< 0.05			-	1.17	-	-	-	-	9.48	-	-	< 0.05	-	-	-	< 0.05			-	0.07	-	
Manganese	1.90		-	-	0.116	-	-	0.06	-	-	-	0.025			-	0.019	-	-	-	-	0.184	-	-	0.119	-	-	-	0.122			-	0.161	-	-
Nutrients (mg/L)					r		1	.	r				, 									T					r				r			
Nitrate (NO3 as N)	0.7 (7)		0.37	1.71	0.01	1.16	7.48	0.04	<0.01	0.8	0.01	0.76	3.54	0.11	<0.01	1.05	0.62	0.05	1.99	9.29	0.14	0.17	0.61	5.61	2.93	0.02	0.03	1.29	3.14	0.48	0.41	0.96	0.02	0.02
Nitrite (NO2 as N)			0.01	0.02	<0.01	<0.01	0.03	<0.01	<0.01	0.31	0.01	0.08	0.32	<0.01	<0.01	0.92	0.1	0.04	<0.01	0.09	<0.01	<0.01	0.02	0.04	0.32	<0.01	<0.01	0.08	0.17	0.21	0.03	0.06	0.04	<0.01
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	0.83	1.8	1.73	0.48	0.23	0.19	0.4	0.25	0.12	0.08	0.2	0.91	0.04	0.29	0.04	0.04	16.4	10.6	21.8		13.80	3.24	2.25	10.80	7.62	7.06	7.17	12.8		11.30	10.40	1.97
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	1.5	2.6	2.5	1	2.40	0.60	0.80	2.00	0.9	3.1	1	4.2	1.9	1.1	1	0.6	22.5	17.5	26.4	16.1	15.20	6.70	9.20	12.40	11.6	9.4	12.4	14	16.5	11.2	10.8	2.2
Dissolved Organic Carbon			-	-	8	-	-	7	-	-	-	4			-	9	-	-	-	-	15	-	-	11	-	-	-	11			-	21	-	-
Fluoride (Electrode)			-	-	0.3	-	-	0.60	-	-	-	0.6			-	0.4	-	-	-	-	0.4	-	-	0.4	-	-	-	0.4			-	0.4	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.33	1.04	0.79	0.42	0.68	0.53	3.10	8.81	0.54	0.63	0.4	0.4	0.44	0.12	0.2	0.8	2.92	1	8.06	3.92	4.27	1.39	1.45	6.84	4.80	5.46	0.88	0.38	2.23	2.52	9.07	2.55
Biological (CFU/100 ml)																																		
Enterococcus MF	35 (8)	35 (8)	-	-	-	-	-	-	-	-	-				-	_	_	_	-	-	-	-	-	-	-	-	-	T			-	-	-	-

Exceeds ANZECC (2000) guidelines marine/fresh water ecosystems Focus of this monitoring report nc = no comment NA = r

³⁵

Gerroa Waste Dispo	sal Dep	oot																																
Sample ID	ANZEC	C, 2000	MW7S	MW 7S	MW 7S	MW7S	MW7S	MW 7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7S	MW7D	MW 7D	MW 7D	MW7D	MW7D	MW 7D	MW7D	MW7D	MW7D	MW7D	MW7D MV	V7D M	NW7D	MW7D	MW7D	MW7D
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14	21/5/10	17/8/10	30/11/10	23/2/11 2	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12 2	1/11/12 18/2	2/13 3 ⁻	1/5/13 3	30/8/13	27/11/13	7/2/14
Ground Level (m AHD)															-	-	-	-	NA				NA								-	-	-	-
Depth to Groundwater (m AHD)															-	-	-	-													-	-	-	-
Groundwater depth (m bTOC)			4.57	4.44	4.09	4.32	4.31	4.24	4.58	4.76	4.38	4.54	4.56	4.32	4.23	4.26	4.68	4.84	4.76	4.59	4.25	4.46	4.46	4.41	4.72	4.88	4.53	4.7	4.67 4.	46	4.38	4.4	4.8	4.98
Height of Stick up (m)			0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6 0	.6	0.6	0.6	0.6	0.6
Groundwater Depth (mbgl)			4.04	3.91	3.56	3.79	3.78	3.71	4.05	4.23	3.85	4.01	4.03	3.79	3.7	3.73	4.15	4.31	4.16	3.99	3.65	3.86	3.86	3.81	4.12	4.28	3.93	4.1	4.07 3.	86	3.78	3.8	4.2	4.38
Field Parameters																																		
pH (field)	6.5-8.0 (a)	8-8.4 (a)	7.5	7.6	7.2	7.4	7.8	7	7.9	7.6	7.9	7.7	7.9	7.5	7.4	7.4	7.8	7.8	7.4	7.4	6.9	7.1	7.5	7.4	7.5	7.4	7.5	7.2	7.4 7	.5	7.4	7.4	7.4	7.5
Temperature (T deg C)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Electrical Conductivity (mS/cm)	0.125-2.2 (a))	0.9	1.01	0.836	0.55	0.604	0.392	0.702	0.584	0.522	<1	0.671	0.467	0.442	0.381	0.518	0.58	0.96	0.86	0.712	0.68	0.634	0.649	0.694	0.625	0.661	<1	0.645 0.6	622 (0.526	0.528	0.547	0.476
Salinity (ppt)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
	8.5-11.0 (a)	9.0-10.0 (a)	2.9	2.99	1.36	2.38	2.33	2.83	1.52	2.57	1.81	1.4	2.07	1.65	2.12	1.77	2.03	1.97	1.79	2.59	1.71	2.08	2.53	2.4	1.67	1.61	1.75	0.8	2.92 2.	89	1.54	1.56	2.2	1.94
Dissolved Oxygen (%)	· · ·		-	-	14.30		-	-	-	-	-	13.9			-	-	-	-	-	-	18.00	-	-	-	-	-	-	7.9			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Redox Potential (mV)			-	-	-	-	-	10.50	-	-	-	<0.1			-	-39	-	-	-	-	-	-	-	23.50	-	-	-	<0.1			-	-28	-	-
Comments			nc	nc	nc	nc	-	-	-	-	nc				nc	nc	nc	nc	nc	nc	nc	nc	-	-	-	-	nc	nc	nc r	nc	nc	nc	nc	nc
Laboratory Analyses																																		
Major lons (mg/L)				· · · · ·			1					1				1																		
Sodium			-	-	109	-	-	34	-	-	-	44			-	40	-	-	-	-	24	-	-	14	-	-	-	16			-	17	-	-
Potassium			-	-	11	-	-	2	-	-	-	6			-	4	-	-	-	-	16	-	-	6	-	-	-	6			-	6	-	-
Calcium			-	-	67	-	-	31	-	-	-	56			-	24	-	-	-	-	90	-	-	95	-	-	-	98			-	76	-	-
Magnesium			-	-	9	-	-	6	-	-	-	7			-	5	-	-	-	-	10	-	-	9	-	-	-	9			-	7	-	-
Chloride			-	-	166	-	-	56	-	-	-	82			-	48	-	-	-	-	20	-	-	14	-	-	-	41			-	16	-	-
Alkalinity (as CaCO3)			200	177	204	151	154	85	166	172	147	152	180	132	141	109	153	143	299	348	307	250	226	251	246	262	231	247			203	250	265	208
Bicarbonate			200	177	204	151	154	85	166	172	136	152	180	132	141	109	153	143	299	348	307	250	226	251	246	262	212	247	247 2	28	203	250	265	208
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	11	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	19	<1	<1 <	:1	<1	<1	<1	<1
Sulphate (SO4)			-	-	39	-	-	10	-	-	-	14			-	9	-	-	-	-	15	-	-	44	-	-	-	24			-	18	-	-
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Total Dissolved Solids (TDS)			538	528	530	362	256	238	418	328	274	334	398	240	238	201	282	312	449	358	408	408	276	402	432	352	364	402	406 3	46	338	298	307	280
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-
Heavy Metals (mg/L)				T							I						-		1	1							1		L					
Iron (filtered)	0.3 (1)		-	-	0.16	-	-	1.22	-	-	-	0.4			-	0.66	-	-	-	-	5.8	-	-	0.07	-	-	-	<0.05			-	0.09	-	-
Manganese	1.90		-	-	0.02	-	-	0.01	-	-	-	0.014			-	0.01	-	-	-	-	0.106	-	-	0.101	-	-	-	0.081			-	0.064	-	-
Nutrients (mg/L)																				_	_													
Nitrate (NO3 as N)	0.7 (7)		0.01	0.01	0.02	0.06	<0.01	0.04	<0.01	0.12	<0.01	0.11	<0.01	0.1	<0.01	0.16	<0.10	<0.01	3.5	0.05	0.12	1.06	0.05	0.16	<0.01	0.06	0.06	0.47	0.97 0.	46	0.16	0.49	<0.10	0.02
Nitrite (NO2 as N)	· ·		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	<0.10	0.02	0.04	0.04	0.06	0.05	0.02	<0.01	<0.01	<0.01	<0.01	0.06	0.01 0.	01	0.01	0.1	<0.10	< 0.01
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	0.49	1.7	2.56	1.34	1.3	0.16	1.93	2.03	2.25	2.34	2.74	1.2	1.91	0.91	1.33	1.64	21.9	28.6	21.7	10.2	7.99	4.38	4.17	1.98	2.61	1.94	1.67 1 .	93	2.82	2.43	2.09	1.97
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	0.8	2.6	4.5	1.6	2.2	0.4	2	3.3	2.6	2.8	3.5	1.4	2.6	1.5	2	1.8	32.7	35.7	28.4		9.60	4.50	4.80	4.80	3.60	2.40				2.60	3	2
Dissolved Organic Carbon	\ /		-	-	9	-	-	6	-	-	-	6			-	8	-	-	-	-	13	-	-	5	-	-	-	5			-	13	-	-
Fluoride (Electrode)			-	-	<0.1	-	-	0.1	-	-	-	0.1			-	<0.1	-	-	-	-	0.1	-	-	0.3	-	-	-	0.2			-	0.2	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.25	0.21	0.5	0.74	0.83	0.57	0.32	0.24	0.58	0.32	0.18	0.19	0.16	0.96	0.67	0.22	0.33	0.5	1.52	0.44	0.26	0.61	5.74	3.36	1	0.96	0.08 0.	17	1	1.66	8.46	2.55
Biological (CFU/100 ml)	0.00 (1)			J.= 1		J I	1 0.00			J. <u> </u>			5.1.0			1 0.00		-													-			
Enterococcus MF	35 (8)	35 (8)	-	-	-		-	-	-	_	-				-	-	-	-	_	-	-	-	-	_	-	-	-				-	-	-	-
Note:	- \ - /	- \ - /		ı — — — — — — — — — — — — — — — — — — —			1	<u> </u>												1	ı	I						I						

Note:

Exceeds ANZECC (2000) guidelines marine/fresh water ecosystems Focus of this monitoring report nc = no comment NA = r

35

Sample ID	ANZECO	C, 2000	MW9	MW 9	MW 9	MW9	MW9	MW 9	MW9	MW9	MW9	MW9	MW9	MW9	MW9	MW9	MW9	MW9
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14
Ground Level (m AHD)			1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
Depth to Groundwater (m AHD)			0.53	0.55	0.95	0.63	0.52	0.48	0.47	0.39	0.52	0.47	0.88	1.03	0.53	0.4	0.49	0.38
Groundwater depth (m bTOC)			1.79	1.77	1.37	1.69	1.8	1.84	1.85	1.93	1.8	1.85	1.44	1.29	1.79	1.92	1.83	1.94
Height of Stick up (m)			0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Groundwater Depth (mbgl)			0.84	0.82	0.42	0.74	0.85	0.89	0.9	0.98	0.85	0.9	0.49	0.34	0.84	0.97	0.88	0.99
Field Parameters					·													
pH (field)	6.5-8.0 (a)	8-8.4 (a)	5.9	6	6.3	6.5	6.7	6.8	6.8	6.3	6.7	6.3	6.5	6.7	6.4	6.2	6.4	6.2
Temperature (T deg C)			-	-	-	-	-	-	-	-	-			•	-	-	-	-
	0.125-2.2 (a)		21.7	16.6	1.4	8.66	7.39	4.91	6.23	13	6.41	11	9.32	12.7	6.39	1.08	10.2	18.9
Salinity (ppt)			-	-	-	-	-	-	-	-	-				-	-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	4.74	5.42	3.36	8.68	2.24	2.89	2.14	2.89	3.31	1.2	1.73	1.68	3.71	1.97	2.14	1.9
Dissolved Oxygen (%)			-	-	35.60	-	-	-	-	-	-	12.5			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-
Redox Potential (mV)			-	-	-	-	-	101	-	-	-	<0.1			-	38	-	-
Comments			nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	nc	nc	nc	nc
Laboratory Analyses	•																	
Major lons (mg/L)																		
Sodium			-	-	759	-	-	904	-	-	-	2330			-	190	-	-
Potassium			-	-	33	-	-	37	-	-	-	101			-	13	-	I
Calcium			-	-	34	-	-	31	-	-	-	147			-	6	-	-
Magnesium			-	-	67	-	-	77	-	-	-	392			-	14	-	-
Chloride			-	-	912	-	-	1410	-	-	-	4620			-	275	-	-
Alkalinity (as CaCO3)			85	61	288	129	118	147	116	78	174	79	194	191	125	53	130	86
Bicarbonate			85	61	288	129	118	147	116	78	174	79	194	191	125	53	130	86
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO4)			-	-	33	-	-	258	-	-	-	679			-	37	-	-
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Dissolved Solids (TDS)			15600	10900	3270	6560	3900	2920	3660	9530	4000	7670	6540	8220	3320	671	7530	13100
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-
Heavy Metals (mg/L)						_												
Iron (filtered)	0.3 (1)		-	-	4.64	-	-	0.57	-	-	-	0.11			-	0.68	-	-
Manganese	1.90		-	-	0.015	-	-	0.002	-	-	-	0.005			-	0.004	-	-
Nutrients (mg/L)																		
Nitrate (NO3 as N)	0.7 (7)		0.4	1.98	6.83	0.52	0.19	0.17	<0.01	<0.01	0.06	0.11	<0.10	0.02	<0.01	<0.10	<0.01	0.01
Nitrite (NO2 as N)			<0.01	<0.01	<0.50	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	<0.10	<0.10	0.84	0.06	0.05	<0.01	1	<0.10	0.03	0.04	0.23	1.08	<0.01	0.02	0.32	0.24
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	0.8	2.7	94.1	1.6	2.40	1.70	2.60	1.00	1.9	1.8	2.4	2.8	3.1	3.1	1.6	1.1
Dissolved Organic Carbon		(*/		-	430	-	-	51	-	-	-	17			-	64	-	-
Fluoride (Electrode)			-	-	0.5	-	-	0.4	_	-	_	0.2			-	0.2	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	<0.01	0.83	<2.00	0.07	0.12	0.07	0.22	0.08	0.14	0.05	0.17	0.23	0.34	0.24	0.09	0.06
Biological (CFU/100 ml)																- ·		
Enterococcus MF	35 (8)	35 (8)	_	_	_	-	_	_	_	_	-				-	-	-	-
Note:			1	1	1	1	1	1	1		1		<u> </u>					
Exceeds ANZECC (2000) gu	idolinos	35	l															

-	-	-	-	-		-	-		
	r	ി	2	=	no	CO	mm	ent	
		- 1 1	•	_	110	00		CIT	

Sample ID	ANZECO	C, 2000	MW10	MW 10	MW 10	MW10	MW10	MW 10	MW10	MW10	MW10	MW10	MW10	MW10	MW10	MW10	MW10	MW10
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14
Ground Level (m AHD)			1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475	1.475
Depth to Groundwater (m AHD)			0.295	0.295	0.785	0.395	0.295	NA	0.185	0.035	0.275	0.225	0.605	0.765	0.365	0.195	0.235	0.105
Groundwater depth (m bTOC)			2.14	2.14	1.65	2.04	2.14	-	2.25	2.4	2.16	2.21	1.83	1.67	2.07	2.24	2.2	2.33
Height of Stick up (m)			0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Groundwater Depth (mbgl)			1.18	1.18	0.69	1.08	1.18	NA	1.29	1.44	1.2	1.25	0.87	0.71	1.11	1.28	1.24	1.37
Field Parameters																		
oH (field)	6.5-8.0 (a)	8-8.4 (a)	4	4.1	5.8	5	5.4	_	5.3	4.9	5.2	4.7	5	5.1	5	5.4	5.3	5.1
Temperature (T deg C)	0.0 0.0 (u)	0.1(4)	-	-	-	-	-	_	-	-	-	1.7	0	0.1	-	-	-	-
	0.125-2.2 (a)		29	6.45	3.06	8.94	5.12	_	5.7	14.8	6.3	12	15.2	13.1	6.64	6.72	14.4	28.2
Salinity (ppt)	0.120 2.2 (u)		-	-	-	-	-	_	-	-	-	12	10.2	10.1	-	-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	4.69	4.93	4.7	9.61	6.1	-	4.16	3.05	3.26	2.4	2.03	3.43	2.01	3.02	2.38	3.89
Dissolved Oxygen (%)			-	-	50.30	-	-	_	-	-	-	24.9			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-
Redox Potential (mV)			-	-	_	_	-	_	-	-	-	<0.1			_	161	_	_
Comments			nc	nc	nc	nc	-	-	-	-	nc				nc	nc	nc	nc
Laboratory Analyses		ļ							I	I		I	11			-		
Major lons (mg/L)																		
Sodium			-	-	406	-	-	-	-	-	-	2390			-	1100	-	-
Potassium			-	-	20	-	-	-	-	-	-	102			-	48	-	-
Calcium			-	-	7	-	-	-	-	-	-	114			-	44	-	-
Magnesium			-	-	13	-	-	-	-	-	-	336			-	136	-	-
Chloride			-	-	449	-	-	-	-	-	-	4730			-	1760	-	-
Alkalinity (as CaCO3)			<1	<1	28	3	10	-	6	2	6	4	1	<1	5	9	10	4
Bicarbonate			<1	<1	28	3	10	-	6	2	6	4	1	<1	5	9	10	4
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO4)			-	-	42	-	-	-	-	-	-	642			-	304	-	-
oH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Dissolved Solids (TDS)			20500	10100	1810	5740	2700	-	3440	10500	3980	8280	10700	7550	3870	3760	10800	19400
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-				_	-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-				-	-	-	-
Heavy Metals (mg/L)																		
ron (filtered)	0.3 (1)		-	-	10.4	-	-	-	-	-	-	0.28			-	0.54	-	-
Vanganese	1.90		-	-	0.003		-	_	-	-	-	0.015			_	0.014	-	-
Nutrients (mg/L)				ļ				<u>ļ</u>					ļ ļ					
Nitrate (NO3 as N)	0.7 (7)		0.2	0.3	1.36	0.44	0.05	_	0.15	<0.01	0.03	0.25	<0.01	0.01	<0.01	0.04	0.02	0.16
Nitrite (NO2 as N)	0.7 (7)		<0.2	<0.01	< 0.50	0.44	<0.01		<0.01	<0.01	<0.03	<0.01	<0.01	0.01	<0.01	<0.04	<0.02	<0.10
	1 00 (2)	2.94(2)		<0.01				-	0.02		0.02	0.02			0.05	0.06	0.3	
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	<0.10		<0.10	<0.10	0.03	-	4	<0.10			<0.10	0.58				0.09
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	2.2	6.2	59.3	1.2	2.6	-	5.2	8	1.5	10	1.4	1.4	3.1	6.1	0.3	<0.2
Dissolved Organic Carbon			-	-	430	-	-	-	-	-	-	12			-	24	-	-
Fluoride (Electrode)			-	-	<0.1	-	-	-	-	-	-	0.2		0.04	-	<0.1	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.15	0.52	<1.00	0.03	0.14	-	0.46	0.8	0.3	0.94	0.03	0.04	0.21	0.45	<0.01	<0.02
Biological (CFU/100 ml)				1				1					,					
Enterococcus MF	35 (8)	35 (8)	-	-	-	-	-	-	-	-	-				-	-	-	-
Note:																		

Sample ID	ANZEC	C, 2000	MW11	MW 11	MW 11	MW11	MW11	MW 11	MW11	MW11	MW11	MW11	MW11	MW11	MW11	MW11	MW11	MW11
Field Measurements	Fresh	Marine	21/5/10	17/8/10	30/11/10	23/2/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14
Ground Level (m AHD)			1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695	1.695
Depth to Groundwater (m AHD)			0.405	0.485	0.955	0.495	0.405	0.375	0.345	0.265	0.375	0.385	0.785	0.965	0.505	0.315	0.375	0.265
Groundwater depth (m bTOC)			2.25	2.17	1.7	2.16	2.25	2.28	2.31	2.39	2.28	2.27	1.87	1.69	2.15	2.34	2.28	2.39
Height of Stick up (m)			0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Groundwater Depth (mbgl)			1.29	1.21	0.74	1.2	1.29	1.32	1.35	1.43	1.32	1.31	0.91	0.73	1.19	1.38	1.32	1.43
Field Parameters																		
pH (field)	6.5-8.0 (a)	8-8.4 (a)	5.1	5.2	5.7	6.1	6.2	6.3	6.4	6	6.1	5.4	5.7	6.2	5.5	6.2	5.7	5.6
Temperature (T deg C)			-	-	-	-	-	-	-	-	-				-	-	-	-
Electrical Conductivity (mS/cm)	0.125-2.2 (a))	18.6	16.2	0.178	6.12	4.05	1.67	3.83	6.26	3.4	8	12.1	7.05	7.3	1080	4.73	8.28
Salinity (ppt)			-	-	-	-	-	-	-	-	-				-	-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	2.41	3.32	5.13	9.66	2.66	1.56	6.61	2.58	2.16	1.2	1.8	1.63	2.05	1.97	2.25	2.15
Dissolved Oxygen (%)			-	-	53.30	-	-	-	-	-	-	12.4			-	-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	-	-	-	-	-	-	-	-	-				-	-	-	-
Redox Potential (mV)			-	-	-	-	-	111	-	-	-	<0.1			-	38	-	-
Comments			nc	nc	nc	nc	-	-	-	-	nc	nc	nc	nc	nc	nc	nc	nc
Laboratory Analyses																		
Major lons (mg/L)																		
Sodium			-	-	368	-	-	298	-	-	-	1900			-	190	-	-
Potassium			-	-	16	-	-	10	-	-	-	67			-	13	-	-
Calcium			-	-	10	-	-	31	-	-	-	100			-	6	-	-
Magnesium			-	-	15	-	-	40	-	-	-	249			-	14	-	-
Chloride			-	-	400	-	-	493	-	-	-	3690			-	275	-	-
Alkalinity (as CaCO3)			24	24	51	103	102	93	60	64	79	28	23	87	28	53	32	26
Bicarbonate			24	24	51	103	102	93	60	64	79	28	23	87	28	53	32	26
Carbonate (as CaCO3)			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulphate (SO4)			-	-	30	-	-	121	-	-	-	471			-	37	-	-
pH (lab)			-	-	-	-	-	-	-	-	-				-	-	-	-
Total Dissolved Solids (TDS)			12800	10700	1530	3710	2260	1330	2370	3570	1990	6370	8300	4310	3950	671	2900	5480
Hardness (as CaCO3)			-	-	-	-	-	-	-	-	-					-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-					-	-	-
Heavy Metals (mg/L)		T	1				1		1				1	1				
Iron (filtered)	0.3 (1)		-	-	6.2	-	-	2.57	-	-	-	1.69			-	0.68	-	-
Manganese	1.90		-	-	0.005	-	-	0.01	-	-	-	0.028			-	0.004	-	-
Nutrients (mg/L)	-				_		1	1										
Nitrate (NO3 as N)	0.7 (7)		0.06	0.17	0.93	0.48	<0.01	0.04	<0.01	<0.01	<0.01	0.08	<0.01	0.81	<0.01	<0.10	<0.01	<0.01
Nitrite (NO2 as N)			<0.01	<0.01	<0.50	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	<0.10	<0.10	<0.10	0.13	0.06	0.03	0.03	0.01	0.03	0.05	<0.10	0.42	0.07	0.02	0.01	<0.01
Total Kjeldhal Nitrogen (TKN)	0.5 (5)	0.12 (6)	2.8	3.9	67.7	3.2	4.30	4.70	2.60	3.40	3	5	2.7	2.3	6	3	1.2	5.0
Dissolved Organic Carbon			-	-	440	-	-	145	-	-	-	48			-	64	-	-
Fluoride (Electrode)			-	-	0.1	-	-	0.2	-	-	-	0.2			-	0.2	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.11	0.52	<1.00	0.31	0.25	0.44	0.25	0.12	0.07	0.3	0.06	0.06	0.32	0.2	0.07	0.47
Biological (CFU/100 ml)		, , , , , , ,	•	-	-	-	-	-	-	-	-	-	-	-				
Enterococcus MF Note:	35 (8)	35 (8)	-	-	-	-	-	-	-	-	-				-	-	-	-
Exceeds ANZECC (2000) gu	uidelines	35]															

Gerroa Waste Disposal Depot

Sample ID	ANZECO	; , 2000	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2	ML-3	ML-3	ML-3	ML-3	ML-3	ML-3	ML-3	ML-3
Field Measurements	Fresh	Marine	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13	7/2/14	22/10/03	2/02/04	13/05/04	13/07/04	26/10/04			
pH (field)	6.5-8.0 (a)	8-8.4 (a)	6.8	6.9	7	7.2	7	7.3	7.4	6.5	7	7.2	6.9	7.63	7.42	7.65	7.26	4.25	No access (Cleary Bros.	No access (Cleary	No access (Cleary
Temperature										-	-	-	-	20.5	21.34	13.03	13.16	18.75	Land) - no samples	Bros. Land) - no	Bros. Land) - no
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		1.41	6.73	19	15.7	20	46.9	19.6	5.13	6.88	13.6	40	13.1	5.3	3.1	8.5	0.4	taken 18/02/2009; 19/05/2009; 27/08/2009;	samples taken 21/05/2010;	samples taken 24/05/2011;
Eh (ORP) (mV)										-	-	-	-	nm	nm	nm	nm	nm	27/11/2009 and 26/02/2010	17/08/2010; 30/11/2010 and	24/08/2011; 3/11/2011 and
Salinity (ppt)										-	-	-	-	7.53	2.85	1.62	4.72	0.21		23/02/2011	1/02/2012
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	6.05	6.68	6.25	5.66	3.2	6.03	5.39	4.61	4.97	11.1	5.22	4.6	4.5	2.2	0.8	1.2			
Dissolved Oxygen (%)							33.2			-	-	-	-	52.9	41.1	24	7.6	12.2			
Turbidity (NTU)	6-50 (a)	0.5-10 (a)								-	-	-	-	30.1	27.1	21.5	20.6	15.1			
Laboratory Analyses																					
Sodium (ICP)			189				7180			-	1200	-	-	-	-	-	-	-			
Potassium (ICP)			10				272			-	52	-	-	-	-	-	-	-			
Calcium (ICP)			32				255			-	79	-	-	-	-	-	-	-			
Magnesium (ICP)			29				701			-	140	-	-	-	-	-	-	-			
Chloride										-	-	-	-	-	-	-	-	-			
Alkalinity (as CaCO3)			50	66	128		121	128	117	43	160	127	115	-	-	-	-	-			
Sulphate (SO4)										-	-	-	-	-	-	-	-	-			
рН										-	-	-	-	-	-	-	-	-			
Redox Potential (mV)			73.5				<0.1			-	58	-	-	-	-	-	-	-			
Total Dissolved Solids (TDS)			846	6730	13700	11800	18100	34600	12900	2950	4260	9920	28800	-	-	-	-	-			
Total Suspended Solids (TSS)										-	-	-	-	-	-	-	-	-			
Metals (mg/L)																					
Iron (ICP)	0.3 (1)		0.89				<0.50			-	1.45	-	-	-	-	-	-	-			
Manganese (ICP)	1.90		0.12				0.031			-	0.052	-	-	-	-	-	-	-			
Nutrients (mg/L)																					
Nitrate (NO3 as N)	0.7 (7)		0.08	0.12	0.07	0.24	0.18	<0.01	0.23	0.02	0.15	0.06	0.01	-	-	-	-	-			
Nitrite (NO2 as N)			<0.01	0.02	0.09	0.06	0.02	<0.01	<0.01	0.02	0.02	0.06	0.05	-	-	-	-	-			
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	1.69	1.03	1.7	1.8	1.09	<0.10	<0.10	0.75	3.19	1	0.44	0.08	0.04	0.08	0.07	0.03			
Total Kjeldahl Nitrogen (TKN)	0.5 (5)	0.12 (6)	2	1.6	2.4	2.9	1.3	0.2	1	2	3.6	2.2	1	-	-	-	-	-			
Total Organic Carbon (TOC)										-	-	-	-	-	-	-	-	-			
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.1	0.03	0.06	0.05	<0.01	<0.01	0.13	0.09	0.04	0.01	0.12	-	-	-	-	-			
Biological (CFU/100 ml)]		
Enterococcus	35 (8)	35 (8)	~18				4			-	20	-	-	10	390	72	60	140]		
Thermotolerant (Faecal) coliforms	150 (8)	150 (8)	~17				2			-	24	-	-	16	32 (app)	50	18 (app)	220]		

Exceeds ANZECC (2000) guidelines 0.054

Focus of this monitoring report

Table SW-1: Summary Analytical Results for Surface Water Locations (2003 to 2014)

Gerroa Waste Disposal Depot

Sample ID	ANZECO	;, 2000	ML-3	ML-3	ML-4																
Field Measurements	Fresh	Marine			10/07/03	22/10/03	2/02/04	13/05/04	13/07/04	26/10/04	16/02/05	29/06/05	30/08/05	23/11/05	27/02/06	31/05/06	31/08/06	28/11/06	27/02/07	23/05/07	22/08/07
pH (field)	6.5-8.0 (a)	8-8.4 (a)	No access (Cleary	No access (Cleary	6.99	7.66	7.77	7.7	17.24	4.26	7.33	6.48	7.22	7.67	7.43	6.58	6.42	6.04	6.76	7.6	5.86
Temperature			Bros. Land) - no	Bros. Land) - no	12.7	19.99	21.72	12.68	12.43	18.66	19	13.77	16.62	18.86	22.14	12.58	15.36	20.6	22.61	14.2	13.56
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		samples taken 31/05/2011;	samples taken 31/05/2013;	1.2	13.3	5.4	3.2	8.1	0.4	2.7	4.4	1.98	5.547	10.24	15.62	5.126	13.68	10.9	24.37	1.381
Eh (ORP) (mV)			10/08/2012; 21/11/2011 and	30/08/2013; 27/11/2013 and	-67	nm	nm	nm	nm	nm	nm	-172	nm								
Salinity (ppt)			18/02/2013	07/02/2014	0.63	7.63	2.93	1.7	4.48	0.21	1.44	2.33	1.01	3.01	5.79	9.15	2.77	7.92	6.19	14.84	0.7
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)			5.1	4	4.1	2.5	0.6	0.5	4.6	7.4	9.48	8.26	5.06	6.3	14.45	7.36	5.02	4.71	8.19
Dissolved Oxygen (%)					46.5	46.1	47.6	23.3	6.6	4.9	50.3	71.6	97.9	90.4	60	62.7	146.8	85.8	58.3	46.2	79
Turbidity (NTU)	6-50 (a)	0.5-10 (a)			17.3	28.8	28.4	22.7	20.4	14.7	26	32.8	10.5	1	3.2	20.2	31.6	2.8	14.4	5.6	4.7
Laboratory Analyses																					
Sodium (ICP)					152	2612	1080	584	1589	40	461	677	219	907	3600	2500	670	3	1700	3600	150
Potassium (ICP)					8	103	48	26	57	9.3	23	33	13	38	230	130	39	0.75	75	160	10
Calcium (ICP)					34	121	62	50	90	13	38	47	39	66	180	67	59	160	66	120	29
Magnesium (ICP)					28	-	119	76	174	9.2	61	95	34	122	450	290	85	0.008	210	500	32
Chloride					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity (as CaCO3)					282	93	108	83	95	14	60	11.5	71	49	119	15	63	83	52	100	-
Sulphate (SO4)					-	-	-	-	-	-	-	-	-	-	-	-	-	0.017	-	-	-
рН					6.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Redox Potential (mV)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids (TDS)					744	8944	3480	1892	5176	160	1532	2496	1232	4236	13124	9400	3100	17000	6700	17400	602
Total Suspended Solids (TSS)					-	48	-	2	7	40	15	36	8	12	9	56	18	43	16	13	15
Metals (mg/L)																					
Iron (ICP)	0.3 (1)				0.23	2.9	0.39	0.27	0.2	3.4	0.095	0.1	0.05	0.28	0.05	3.2	2.4	<0.04	0.06	0.36	0.4
Manganese (ICP)	1.90				0.15	0.096	0.007	0.04	0.032	0.48	<0.001	0.29	<0.01	0.06	0.053	0.1	0.1	0.03	0.05	0.06	0.16
Nutrients (mg/L)																					
Nitrate (NO3 as N)	0.7 (7)				0.04	0.03	0.12	<0.02	0.08	0.04	0.02	0.075	<0.04	<0.04	<0.04	1.4	<0.04	190	0.16	0.09	0.1
Nitrite (NO2 as N)					<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	0.019	0.01	0.003	0.008	0.016	0.003	4600	0.012	0.007	0.02
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)			0.04	0.02	<0.02	<0.02	0.06	<0.02	0.21	<0.02	<0.10	0.05	0.55	0.29	0.37	<0.1	0.09	1.5	0.37
Total Kjeldahl Nitrogen (TKN)	0.5 (5)	0.12 (6)			0.37	0.15	0.75	0.48	0.7	2.1	0.8	0.66	0.62	0.42	1.3	2	1.4	0.75	0.83	2.3	0.44
Total Organic Carbon (TOC)					7	5	3	8	6	28	10	9	10	6	2	NR	10	3	6		8
Total Phosphorus (TP)	0.05 (7)	0.025 (7)			<0.002	0.049	0.036	<0.002	<0.002	0.3	0.021	0.04	<0.002	<0.005	0.029	0.098	0.01	0.017	0.036	0.008	0.44
Biological (CFU/100 ml)																					
Enterococcus	35 (8)	35 (8)]		<1	10	320	60	72	100	180	<1	52	160	100	80	60	30 (app)	1800(ap)	230	<2
Thermotolerant (Faecal) coliforms	150 (8)	150 (8)			<1	15	28 (app)	44	20 (app)	240	24 (app)	<1	64	25	60	112	30 (app)		2000	12 (app)	<2

Exceeds ANZECC (2000) guidelines

0.054

Focus of this monitoring report

Table SW-1: Summary Analytical Results for Surface Water Locations (2003 to 2014)

Gerroa Waste Disposal Depot

Sample ID	ANZECO	C, 2000	ML-4	ML-4	ML-4	ML-4	ML-4	ML-4	ML-4	ML-4	ML-4	ML-4	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5
Field Measurements	Fresh	Marine	21/11/07	22/02/08	29/05/08	25/08/08	19/11/08						10/07/03	22/10/03	2/02/04	13/05/04	13/07/04	26/10/04
pH (field)	6.5-8.0 (a)	8-8.4 (a)	7.19	6.94	6.64	6.8	7.07	No access (Cleary Bros.	No access (Cleary	No access (Cleary	No access (Cleary	No access (Cleary	7.26	7.97	7.54	7.51	7.51	6.6
Temperature			23.26	20.85	14.86	14.3	20	Land) - no samples	Bros. Land) - no	Bros. Land) - no	Bros. Land) - no	Bros. Land) - no	13.6	22.51	23.47	16.41	14.26	19.03
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		9.749	1.825	1.533	1.7	5.49	taken 18/02/2009; 19/05/2009; 27/08/2009;	samples taken 21/05/2010;	samples taken 24/05/2011;	samples taken 31/05/2011;	samples taken 31/05/2013;	3	40.3	19.7	36.1	14.6	0.7
Eh (ORP) (mV)			nm	nm	nm	nm	89	27/11/2009 and 26/02/2010	17/08/2010; 30/11/2010 and	24/08/2011; 3/11/2011 and	10/08/2012; 21/11/2011 and	30/08/2013; 27/11/2013 and	-63	nm	nm	nm	nm	nm
Salinity (ppt)			5.49	1.01	0.97	1.1	nm		23/02/2011	1/02/2012	18/02/2013	07/02/2014	1.58	25.7	11.7	22.78	8.48	0.34
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	5.31	4.88	5.11	8.2	nm						4.3	5.9	3	1.6	0.5	1
Dissolved Oxygen (%)			64.2	54.9	63.2	81	46						41.8	79	37	18.2	4.8	11.3
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	0	30.5	1.1	4.6	nm						15.4	33.3	26.8	26.1	32.3	14.1
Laboratory Analyses																		
Sodium (ICP)			1500	230	440	200	740						-	-	-	-	-	-
Potassium (ICP)			70	14	20	11	30						-	-	-	-	-	-
Calcium (ICP)			70	36	100	40	67						-	-	-	-	-	-
Magnesium (ICP)			210	36	64	34	96						-	-	-	-	-	-
Chloride			-	-	-	-	-						-	-	-	-	-	-
Alkalinity (as CaCO3)			90	97	<2	61	80						-	-	-	-	-	-
Sulphate (SO4)			-	-	-	-	-						-	-	-	-	-	-
рН			-	-	-	-	7.2						-	-	-	-	-	-
Redox Potential (mV)			-	-	-	-	170						-	-	-	-	-	-
Total Dissolved Solids (TDS)			6400	1000	1100	990	3100						-	-	-	-	-	-
Total Suspended Solids (TSS)			-	-	-	-	-						-	-	-	-	-	-
Metals (mg/L)																		
Iron (ICP)	0.3 (1)		0.22	2.9	0.68	0.43	1.3						-	-	-	-	-	-
Manganese (ICP)	1.90		0.017	0.12	0.04	0.09	0.08						-	-	-	-	-	-
Nutrients (mg/L)							_											
Nitrate (NO3 as N)	0.7 (7)		0.05	<0.04	-	-	0.05						-	-	-	-	-	-
Nitrite (NO2 as N)			0.011	0.01	-	-	<0.01						-	-	-	-	-	-
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	<0.02	1.7	<0.10	0.27	<1						1.9	1.2	4.1	1.4	4.2	0.2
Total Kjeldahl Nitrogen (TKN)	0.5 (5)	0.12 (6)	0.49	2.9	0.53	0.76	0.8						-	-	-	-	-	-
Total Organic Carbon (TOC)			11	16	10	10	-						-	-	-	-	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	0.019	0.05	<0.005	<0.005	<0.05						-	-	-	-	_	-
Biological (CFU/100 ml)																		
Enterococcus	35 (8)	35 (8)	32	70	18	8 (app)	14 (app)						2	4	600	36 (app)	40	80
Thermotolerant (Faecal) coliforms	150 (8)	150 (8)	16 (app)	16 (app)	15	13	16 (app)						<1	16	44	I	12 (app)	160

Exceeds ANZECC (2000) guidelines

0.054

Focus of this monitoring report

Gerroa Waste Disposal Depot

Sample ID	ANZECO	, 2000	ML-5	ML-5	ML-5	ML5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5	ML-5
Field Measurements	Fresh	Marine	19/11/08	18/02/09	19/05/09	27/08/09	27/11/09	26/2/10	21/05/10	17/08/10	30/11/10	23/02/11	24/5/11	24/8/11	3/11/11	1/2/12	31/5/12	10/8/12	21/11/12	18/2/13	31/5/13	30/8/13	27/11/13
pH (field)	6.5-8.0 (a)	8-8.4 (a)	7.23	6.9	6.7	5.9	6.3	6.8	6.7	6.7	5.8	6.8	7	6.8	6.9	7	7.2	6.9	7	7.3	6.4	7	7.2
Temperature			20.2	-	-	-	-	-	-	-	-	-									-	-	-
Electrical Conductivity (mS/cm)	0.125-2.2 (a)		16.67	13	27	31	19	9.6	21.3	5.1	0.294	16.6	8	9.19	2.89	9.59	5.08	5	45.9	18.9	1.26	1.81	4.26
Eh (ORP) (mV)			88	-	-	-	-	-	-	-	-	-									-	-	-
Salinity (ppt)			nm	-	-	-	-	-	-	-	-	-									-	-	-
Dissolved Oxygen (mg/L)	8.5-11.0 (a)	9.0-10.0 (a)	nm	8.1	6.4	5.4	4.9	5.2	6.36	9.44	5.18	6.24	5.38	6.39	6.86	6.68	7.37	3.6	6.82	4.5	5.22	3.91	6.65
Dissolved Oxygen (%)			67	-	-	62	-	-	-	-	54.00	-						33.7			-	-	-
Turbidity (NTU)	6-50 (a)	0.5-10 (a)	nm	-	-	-	-	-	-	-	-	-									-	-	-
Laboratory Analyses																							
Sodium (ICP)			2100	2100	-	6300	-	-	-	-	21	-		102				1030			-	274	-
Potassium (ICP)			84	88	-	310	-	-	-	-	3	-		7				43			-	16	-
Calcium (ICP)			90	110	-	200	-	-	-	-	7	-		31				74			-	48	-
Magnesium (ICP)			240	260	-	820	-	-	-	-	5	-		21				122			-	36	-
Chloride			-	-	-	-	-	-	-	-	-	-									-	-	-
Alkalinity (as CaCO3)			110	110	110	120	100	106	103	55	6	129	112	45	52	148	132	111	117	114	37	148	112
Sulphate (SO4)			-	-	-	-	-	-	-	-	-	-									-	-	-
рН			7	-	-	-	-	-	-	-	-	-									-	-	-
Redox Potential (mV)			190	-4	-	82	-	-	-	-	-	-		72.6				<0.1			-	62	-
Total Dissolved Solids (TDS)			1200	8800	24000	24000	12000	6380	15400	3060	146	10800	4450	538	1660	6530	2880	3890	29700	12700	692	936	2510
Total Suspended Solids (TSS)			-	-	-	-	-	-	-	-	-	-									-	-	-
Metals (mg/L)					_							_			_				_				
Iron (ICP)	0.3 (1)		0.57	0.66	-	0.11	-	-	-	-	0.98	-		0.89				0.94			-	1.99	-
Manganese (ICP)	1.90		0.06	0.26	-	<0.01	-	-	-	-	0.062	-		0.139				0.042			-	0.083	-
Nutrients (mg/L)					_																		
Nitrate (NO3 as N)	0.7 (7)		0.08	1.4	0.1	0.2	0.13	0.19	0.16	0.08	0.03	0.36	0.1	0.05	0.05	0.11	0.13	0.38	0.02	0.16	0.03	0.06	0.05
Nitrite (NO2 as N)			0.02	0.43	0.02	0.09	0.04	0.02	0.1	<0.01	<0.01	0.1	0.03	<0.01	<0.01	0.12	0.02	0.01	<0.01	<0.01	<0.01	<0.01	0.02
Ammonia (NH3 as N)	1.88 (2)	2.84 (2)	1.6	2	1.2	2.8	3	2.17	1.52	0.94	0.04	1.83	3.12	1.6	0.85	3.07	1.73	1.73	<0.10	<0.10	0.81	2.6	0.52
Total Kjeldahl Nitrogen (TKN)	0.5 (5)	0.12 (6)	2.4	2.1	1.2	2.9	3.6	4.6	1.7	1.6	1.5	3.3	4.2	2	1.2	4.1	2.5	1.9	0.2	1.7	1.7	3.1	0.6
Total Organic Carbon (TOC)			-	-	-	-	-	-	-	-	-	-									-	-	-
Total Phosphorus (TP)	0.05 (7)	0.025 (7)	<0.05	<0.005	0.01	0.04	<0.05	1.78	<0.01	<0.01	<0.01	<0.01	0.03	0.12	0.03	0.03	<0.01	0.02	<0.01	1.95	0.06	0.03	0.01
Biological (CFU/100 ml)																							
Enterococcus	35 (8)	35 (8)	116 (app)	180	-	-	-	-	-	-	~1200	-		~8				12			-	~16	-
Thermotolerant (Faecal) coliforms	150 (8)	150 (8)	58	64	-	6	-	-	-	-	~9100	-		<2				4			_	~6	-

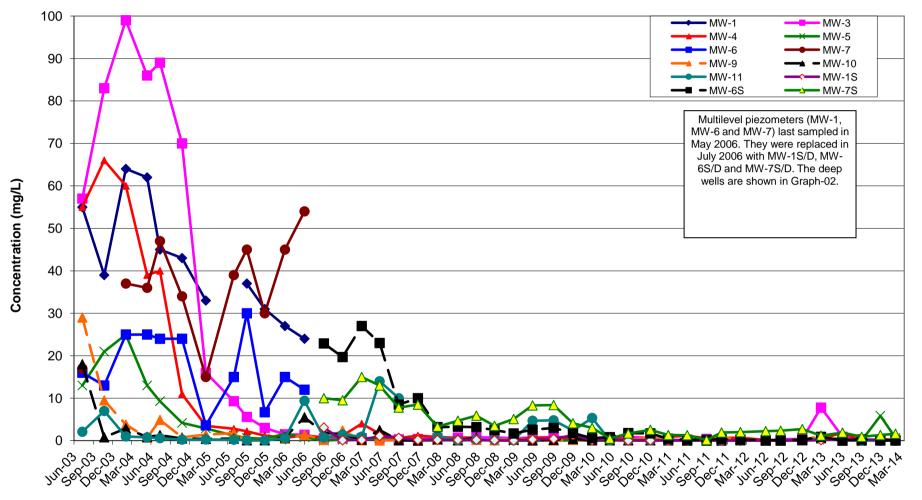
Exceeds ANZECC (2000) guidelines

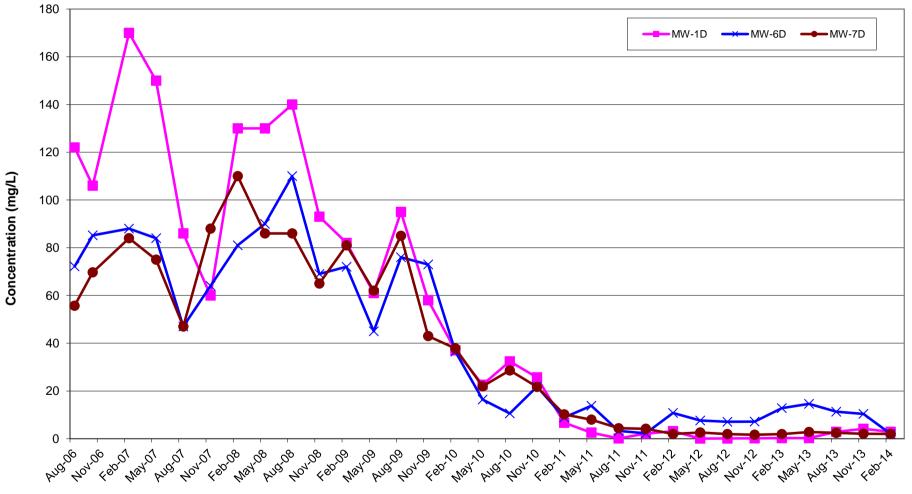
0.054

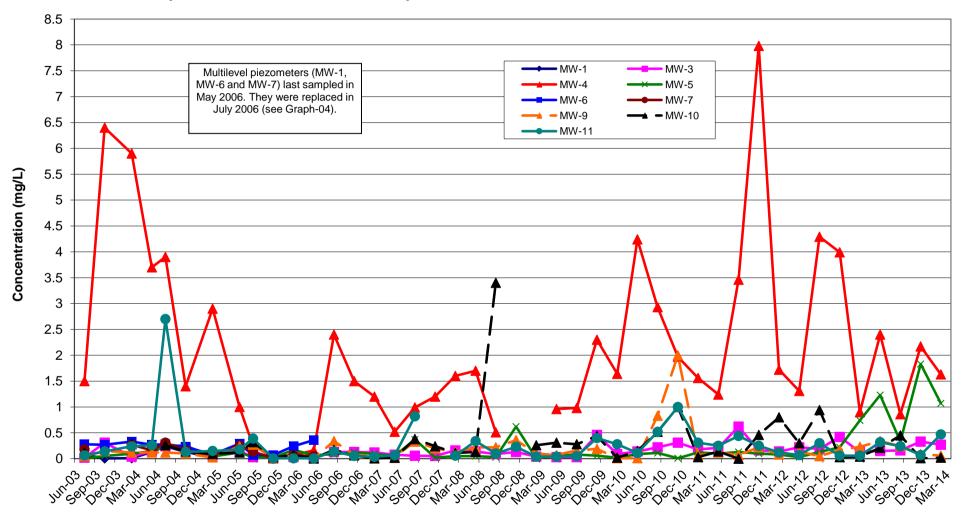
Focus of this monitoring report

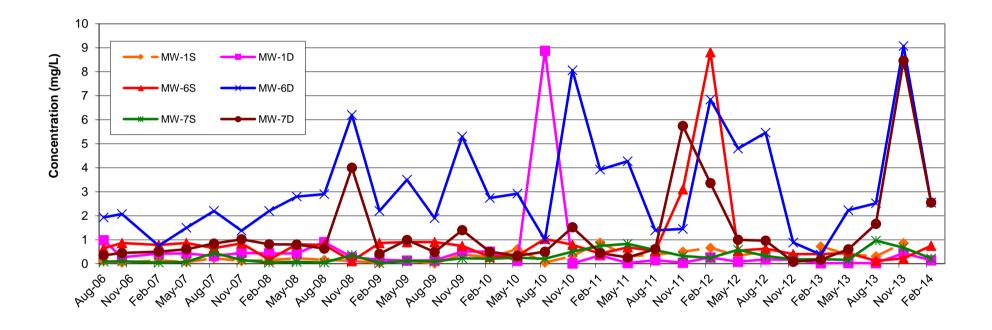
Earth2Water Pty Ltd

		Groun	dwater			Blue Ang	gle Creek		Detection	
Analytes	31/05/13	30/08/13	27/11/13	7/02/14	31/05/13	30/08/13	27/11/13	7/02/14	Limit	Method Reference
			Physica	l Propertie	s					
рН	Х	Х	Х	Х	Х	Х	Х	Х	0.01 pH unit	pH meter and probe/APHA4500-HB
Electrical Conductivity	Х	Х	Х	Х	Х	Х	Х	Х	0.01 mS/cm	Conductivity meter and probe
Dissolved Oxygen	Х	Х	Х	Х	Х	Х	Х	Х	0.0001	DO meter and probe
Redox (Orp)		Х				Х			1 mV	Platinum electrode probe
Temperature									1 °C	Temperature meter and probe
Total Dissolved Solids	Х	X	X	X	Х	Х	Х	Х	5 mg/L	Determined gravimetrically by drying (APHA 2540 C)
Suspended Solids									2 mg/L	APHA2540D
Turbidity									1 NTU	Turbidmeter
			Nu	trients	-	-				
Ammonia-nitrogen	Х	Х	Х	Х	Х	Х	Х	Х	0.01 mg/L	FIA
Total Phosphorus	Х	Х	Х	Х	Х	Х	Х	Х	2 µg/L	FIA
Nitrate-nitrogen	Х	Х	Х	Х	Х	Х	Х	Х	10 µg/L	FIA
Nitrite-nitrogen	Х	Х	Х	Х	Х	Х	Х	Х	1 μg/L	FIA
Total Kjeldhal Nitrogen	Х	Х	Х	Х	Х	Х	Х	Х	50 µg/L	FIA
			Hydro	o-chemical						
Calcium		Х				Х			0.5 mg/L	USEPA 6010 A
Chloride		х							0.5 mg/L	Titrated with mercuric nitrate using diphen carbazonel/xylene cyanol FF indicator
Fluoride		Х							0. 1 mg/L	APHA4500-FC
Magnesium		Х				Х			0.02 mg/L	USEPA 6010 A
Sulphate		Х							1 mg/L	ICID/MS
Sodium		Х				Х			0.05 mg/L	USEPA 6010 A
Bicarbonate/Alkalinity	Х	Х	Х	Х	Х	Х	Х	Х	0.5 mg/L	APHA2340C
Potassium		Х				Х			0.05 mg/L	USEPA 6010 A
			Organic (Contamina	nts					
Dissolved Organic Carbon		Х							0.50 mg/L	APHA 5310C
Total Organic Carbon									0.1 mg/L	APHA 5310C
			Inorganic	Contamina	nts				U	
Iron		Х				Х			1 μg/L	USEPA 6010 A
Manganese		Х				Х			1 μg/L	USEPA 6010
-			Biological	Contamina	ants					
Thermotolerant (Faecal) coliforms MF						Х			1cfu/100 ml	WMM 009 (~AS 4276.7 - 1995)
Enterococcus MF	İ					Х			1cfu/100 ml	WMM 013 (~AS 4276.9 - 1995)

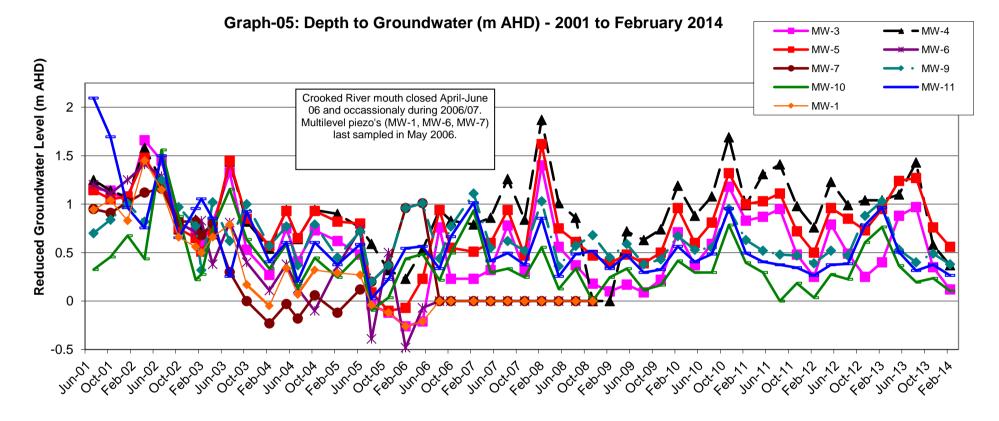

Table 6: Groundwater and Surface Water Monitoring - 2013 to 2014

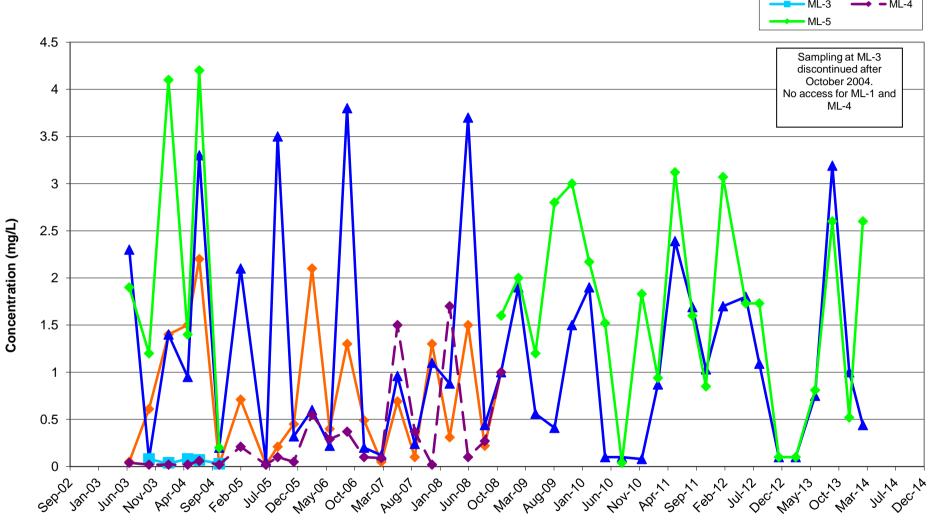

Graphs



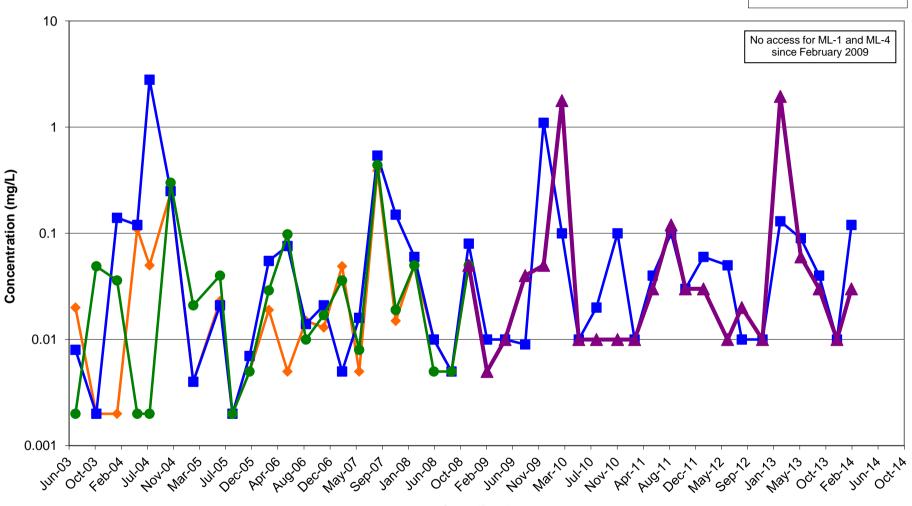


Graph -02: Groundwater Ammonia Time-Series Trends - Deep Wells





Graph-03: Groundwater Total Phosphorous Time-Series Trends - Standard Wells


Graph-04: Groundwater Total Phosphorous Time-Series Trends - New Shallow and Deep Wells

Graph-06: Surface Water Ammonia Time-Series Trends

ML-1 ML-2 ML-3 ML-4

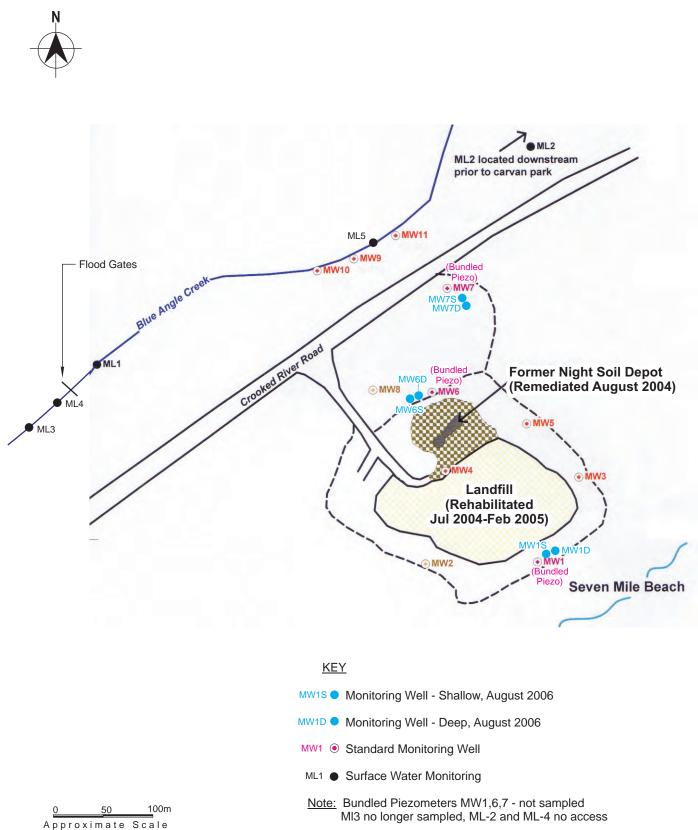
Graph-07: Surface Water Total Phosphorus Time-Series Trends

→ ML-1 → ML-2 → ML-4 → ML-5

Figures

earth²water_{Pty Ltd}

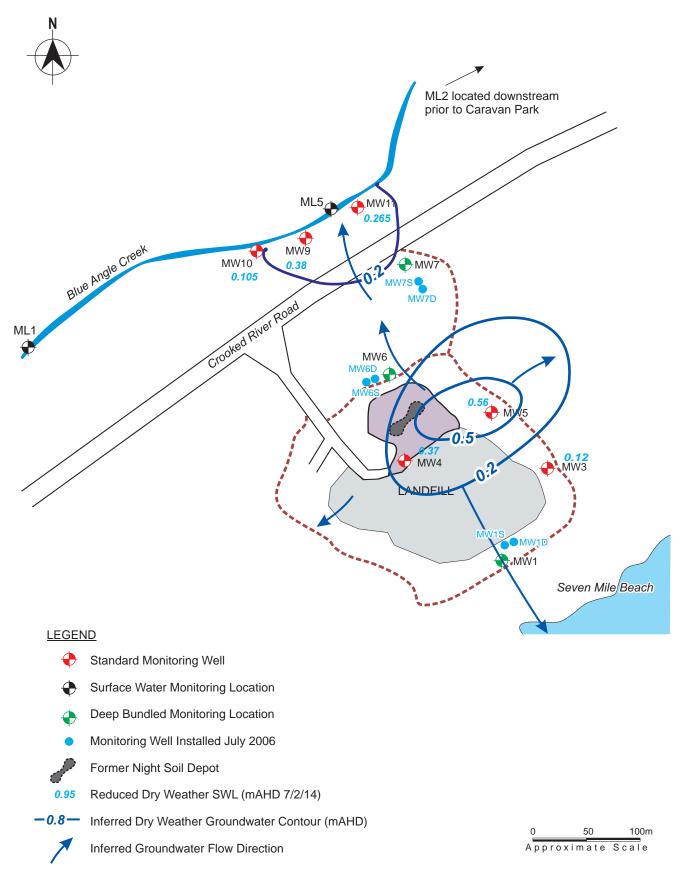
Environmental & Groundwater Consulting



Source: Neil Charters Pty Ltd

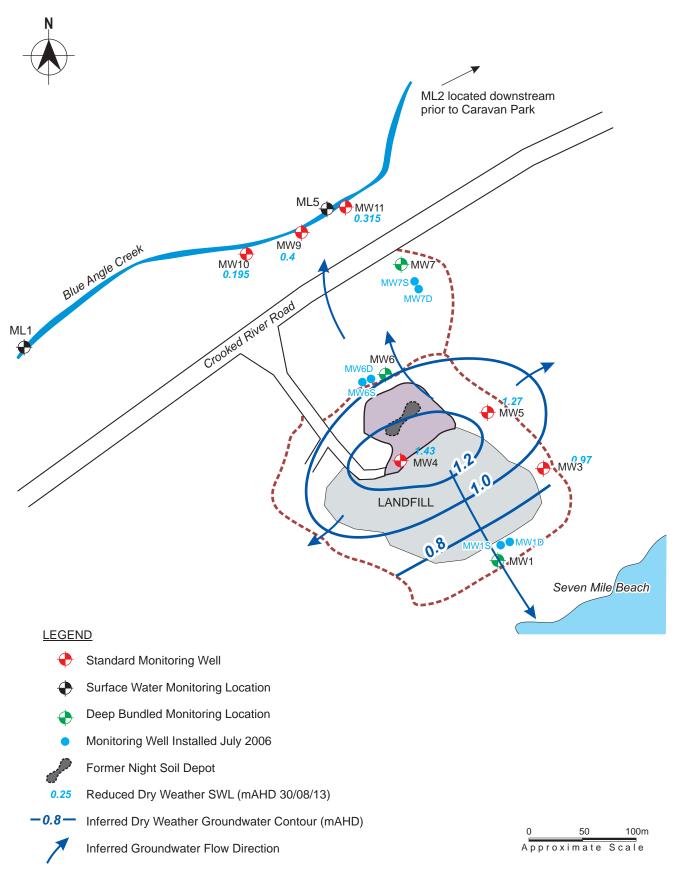
SITE LOCATION

Date: 4 March 2014 Reference: E2W-025_55.cdr GERROA ANNUAL MONITORING REPORT (2013-2014)



Source: URS Australia Pty Ltd

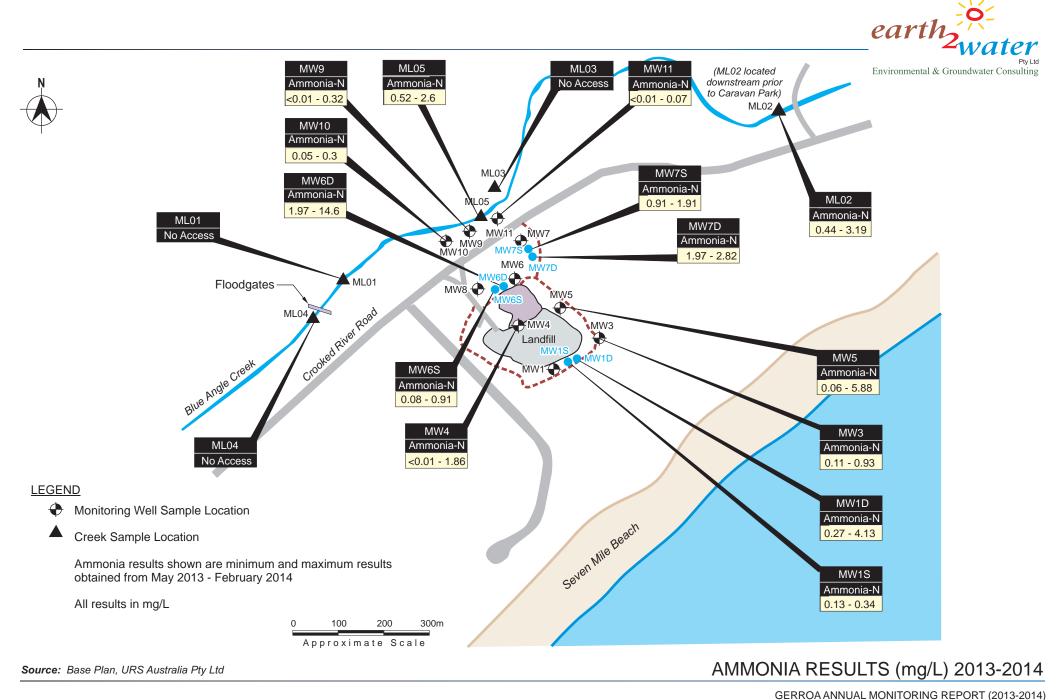
Date: 4 March 2014 **Reference:** E2W-025_01.cdr SITE LAYOUT & WELL LOCATIONS



Source: URS Australia Pty Ltd- baseplan

INFERRED GROUNDWATER FLOW REGIME (Wet, February 2014)

GERROA ANNUAL MONITORING REPORT (2013-2014)



Source: URS Australia Pty Ltd- baseplan

INFERRED GROUNDWATER FLOW REGIME (Dry, August 2013)

GERROA ANNUAL MONITORING REPORT (2013-2014)

Date: 5 March 2014

Reference: E2W_025_58.cdr

Figure 4

Appendix A

Environmental Division

199	CER	TIFICATE OF ANALYSIS	
Work Order	[:] EW1301595	Page	: 1 of 6
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541 AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
Telephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
acsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Quarterly	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 31-MAY-2013
Sampler	: Craig Wilson	Issue Date	: 05-JUN-2013
Site	:		
		No. of samples received	: 17
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically carried out in compliance with procedures spe		idicated below. Electronic signing has been
MAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
WORLD RECOGNISED		Ankit Joshi Glenn Davies Hoa Nguyen	Inorganic Chemist Environmental Services Representative Senior Inorganic Chemist	Sydney Inorganics Laboratory - Wollongong Sydney Inorganics

Address 99 Kenny Street, Wollongong 2500 Environmental Division NSW ଔଧଧୀୀ 3ଠିକଥା ନାନ୍ଦର ମହାନ ଅନ୍ୟର ମହାନାନ ଅନ୍ୟରେ ସିହେନ୍ତି ସହ

www.alsglobal.com

Page	: 2 of 6
Work Order	: EW1301595
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- Sites ML1, ML-3 & ML-4 No access at time of sampling.
- TDS by method EA-015 may bias high for sample #2 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1D	MW1S	MW3	MW4	MW5
	Cli	ient sampli	ing date / time	31-MAY-2013 09:55	31-MAY-2013 09:45	31-MAY-2013 09:30	31-MAY-2013 08:25	31-MAY-2013 09:15
Compound	CAS Number	LOR	Unit	EW1301595-001	EW1301595-002	EW1301595-003	EW1301595-004	EW1301595-005
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	372	362	298	262	240
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	284	100	238	137	172
Total Alkalinity as CaCO3		1	mg/L	284	100	238	137	172
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.27	0.34	0.93	1.86	0.45
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N		0.01	mg/L	0.08	<0.01	0.02	0.88	0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	1.06	<0.01	0.60	0.36	<0.01
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lvser					1	1
Nitrite + Nitrate as N		0.01	mg/L	1.14	<0.01	0.62	1.24	0.01
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.1	1.9	1.5	15.3	16.8
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser						
[^] Total Nitrogen as N		0.1	mg/L	2.2	1.9	2.1	16.5	16.8
EK067G: Total Phosphorus as P by Di	iscrete Analvser						1	1
Total Phosphorus as P		0.01	mg/L	0.03	0.38	0.15	2.40	1.23
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.3	6.4	7.2	6.3	7.0
Electrical Conductivity (Non Compensated)		1	µS/cm	628	406	512	440	130
Dissolved Oxygen		0.01	mg/L	1.97	1.57	1.68	2.26	1.52
Depth		0.01	m	3.10	3.25	3.57	4.14	3.51

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW6D	MW6S	MW7D	MW7S	MW9
	Cl	ient sampli	ing date / time	31-MAY-2013 08:40	31-MAY-2013 08:50	31-MAY-2013 09:10	31-MAY-2013 09:00	31-MAY-2013 10:25
Compound	CAS Number	LOR	Unit	EW1301595-006	EW1301595-007	EW1301595-008	EW1301595-009	EW1301595-010
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	454	286	338	238	3320
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	386	62	203	141	125
Total Alkalinity as CaCO3		1	mg/L	386	62	203	141	125
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	14.6	0.04	2.82	1.91	<0.01
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N		0.01	mg/L	0.03	<0.01	0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.41	<0.01	0.16	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.44	<0.01	0.17	<0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	16.5	1.9	3.9	2.6	3.1
EK062G: Total Nitrogen as N (TKN + N	NOx) by Discrete Ar	nalyser						
[^] Total Nitrogen as N		0.1	mg/L	16.9	1.9	4.1	2.6	3.1
EK067G: Total Phosphorus as P by Di	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	2.23	0.44	0.60	0.16	0.34
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.2	6.9	7.4	7.4	6.4
Electrical Conductivity (Non Compensated)		1	µS/cm	867	432	526	442	6390
Dissolved Oxygen		0.01	mg/L	1.77	1.46	1.54	2.12	3.71
Depth		0.01	m	4.62	4.35	4.38	4.23	1.79

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW10	MW11	ML-1	ML-2	ML-3
	Cli	ient sampli	ing date / time	31-MAY-2013 10:15	31-MAY-2013 10:40	31-MAY-2013 10:55	31-MAY-2013 10:50	31-MAY-2013 11:00
Compound	CAS Number	LOR	Unit	EW1301595-011	EW1301595-012	EW1301595-013	EW1301595-014	EW1301595-015
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	3870	3950		2950	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1		<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1		<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	5	28		43	
Total Alkalinity as CaCO3		1	mg/L	5	28		43	
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.05	0.07		0.75	
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N		0.01	mg/L	<0.01	<0.01		0.02	
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01		0.02	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01		0.04	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	3.1	5.6		2.0	
EK062G: Total Nitrogen as N (TKN + N	NOx) by Discrete An	alyser						
└ Total Nitrogen as N		0.1	mg/L	3.1	5.6		2.0	
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.21	0.32		0.09	
EN67 PK: Field Tests								
рН		0.1	pH Unit	5.0	5.5		6.5	
Electrical Conductivity (Non		1	µS/cm	6640	7300		5130	
Compensated)								
Dissolved Oxygen		0.01	mg/L	2.01	2.05		4.61	
Depth		0.01	m	2.07	2.15			
Field Observations		0.01				No Access		No Access

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	ML-4	ML-5	 	
	Cl	ient sampli	ing date / time	31-MAY-2013 11:05	31-MAY-2013 10:35	 	
Compound	CAS Number	LOR	Unit	EW1301595-016	EW1301595-017	 	
EA015: Total Dissolved Solids							
Total Dissolved Solids @180°C		1	mg/L		692	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L		<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L		<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L		37	 	
Total Alkalinity as CaCO3		1	mg/L		37	 	
EK055G: Ammonia as N by Discrete Ana	lyser						
Ammonia as N	7664-41-7	0.01	mg/L		0.81	 	
EK057G: Nitrite as N by Discrete Analys	er						
Nitrite as N		0.01	mg/L		<0.01	 	
EK058G: Nitrate as N by Discrete Analys	ser						
Nitrate as N	14797-55-8	0.01	mg/L		0.03	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L		0.03	 	
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L		1.7	 	
EK062G: Total Nitrogen as N (TKN + NO	() by Discrete Ar	nalyser					
[^] Total Nitrogen as N		0.1	mg/L		1.7	 	
EK067G: Total Phosphorus as P by Disc	rete Analyser						
Total Phosphorus as P		0.01	mg/L		0.06	 	
EN67 PK: Field Tests							
pH		0.1	pH Unit		6.4	 	
Electrical Conductivity (Non Compensated)		1	µS/cm		1260	 	
Dissolved Oxygen		0.01	mg/L		5.22	 	
Field Observations		0.01		No Access		 	

1. The second se		THO STATESTICE STREAM IN A CONTRACT OF A CONTRACT OF THE STATESTICS OF THE STATESTIC	1 ((TAND AND A SHORE AND A S	ISERVIC COM PRINT 4795 DEBU E I W SW P	The structure of	un com Ph	105 NO.00 80	U 5 adviaide Taise	Ph. 05 10559 00500 5 administration Calsenvire com	2h 02 5521 2158 6	Ph 02 6331 2458 E launoiston@www.vio.com
CLIENT:	Klama Municipal Council		TURNARC	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):	lue date):				FOR LAB	FOR LABORATORY USE ONLY (Circle)
OFFICE:	PO Box 75 Klama NSW 2533		(Standard TA		Non Standard or urgent TAT		(List due date):			Custody Seal Intact?	eal Intact? Yes No
PROJECT:	Gerroa Landfill Quarterly		ALS QUOTE NO .:	WL/08			-		COC SEQUENCE NUMBER (Circle)	Free Ice / In	bricks aresent upon
ORDER NUMBER:							COC	1 2 3	4 5 6	7 Random Sa	Receipt?
PROJECT MANAGER:	Paul Czulowski	CONTACT PH: 4232 0418	H: 4232 04	18			OF	_	4 51	7 Other co	
SAMPLER:	Craig Wilson	SAMPLER MOBILE: 0408 251 560	OBILE: 040		RELINQUISHED BY:	1	RECE	RECEIVED BY:	7	RELINQUISH	Environmental Division
COC emailed to ALS? (YES /	(YES / NO)	EDD FORMAT (or default);	T (or defau	It): Craig	À	1	ħ	An La			NSW South Coast
mail Reports to (will c	Email Reports to (will default to PM if no other addresses are listed): paulc@kiama nsw gov.au	a listed): paulc@kiama nsw.gov	au	DATE/TIME	ME	1	DATE	DATEITIME	-	DATE/TIME	Work Order
mall Invoice to (will d	Email Invoice to (will default to PM if no other addresses are listed):	listed): paulc@kiama.nsw.gov.au	82	1/12	5/13 1	255	31	31-5-13	12:55	b	CINIA SOA EOF
COMMENTS/SPECIAL	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL	ALI									ENLIGUIDED
ALS USE ONLY	SAMPI MATRIX: S	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	Ň	ANALYS!	S REQUIR	ED including S	ANALYSIS REQUIRED Including SUITES (NB: Suite Codes must be listed Where Metals are required, specify Total (unfittered bottle required) or Dissolved (thed film	must be listed	
LABID	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE - (refer to codes below)	TOTAL BOTTLES		, NH3, TP, ТКN, 3)				Telephone : 02 42253125
						TDS	NT- 8 (TI NO2, NO	Alkalinit			
-	MW 1D	31/5/13 958	×	P-500mL, SP	2	1	*				Field Tests pH, EC, DO mo/L Depth
N	MW 1S	1 945	٤	P-500mL, SP	2	•	<	1			Field Tests pH, EC.
50	MW 3	046	×	P-500mL, SP	2	<	1	1			Field Tests pH, EC, DO mo/L Deoth
4	MW 4	825	*	P-500mL, SP	2	*	1				Field Tests pH, EC.
5	MW 5	515	×	P-500mL, SP	2	1	1	~			Field Tests pH, EC, DO mg/L, Depth
۵.	MW 6D	043	×	P-500mL, SP	2	1	1	1			Field Tests pH, EC, DO mg/L. Depth
7	MW 6S	850	×	P-500mL, SP	2	•	*	~			Field Tests pH, EC, DO mg/L. Depth
8	MW 7D	910	٤	P-500mL, SP	N	*	*	*			Field Tests pH, EC, DO mg/L, Depth
9	MW 7S	900	N	P-500mL, SP	2	<	•	*			Field Tests pH, EC, DO mo// Depth
10	8 MW	1025	×	P-500mL, SP	N	1	`	1			Field Tests pH, EC, DO mg/L. Depth
11	MW10	1015	N	P-500mL, SP	2	•	<	*			Field Tests pH, EC, DO mg/L, Depth
12	MW 11	+ 1040	W	P-500mL, SP	2	~	*	*			Field Tests pH, EC, DO mg/L, Depth
				101	2						

CLIENT:	Klama Municipal Council	TURNAROUND REO	TIIRNARO		Canadanal TAT II lat	data			1	END I ADODATOD	FOR LABORATORY INE ONLY (Charles)
OFFICE	PO Box 75 Kiama NSW 2533		(Standard TAT		Non Standard or Import TAT II					Custoriu Seal Intent?	
PROJECT:	Gerroa Landfill Quarterly		ALS QUOTE NO .:	WL/08	111		taria and		COC SEQUENCE NUMBER (Circle)	Free ice / frozen ice bricks present upon	ricks present upon Yes No
ORDER NUMBER:							COC:	N	3 A 5 B	7 Random Sample Temperature on Receipt	
PROJECT MANAGER:	Paul Czulowski	CONTACT P	CONTACT PH: 4232 0418	8			OF	1 2	3 4 5 6	7 Other comment:	
SAMPLER:	Cralg Wilson	SAMPLER N	SAMPLER MOBILE: 0408 251 560		RELINQUISHED BY:	•	RECI	RECEIVED BY:		RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS? (YES / NO)	(YES / NO)	EDD FORM	EDD FORMAT (or default):): Craig	A		-				
Email Reports to (will (Email Reports to (will default to PM if no other addresses are listed): paulo@klama nsw gov au	a listed): paulc@klama.nsw.gov	au	DATE	DATE/TIME:		DATE	DATE/TIME:		DATE/TIME:	DATE/TIME
Email Invoice to (will d	Email Invoice to (will default to PM if no other addresses are listed) paulo@kiama.nsw.gov.au	listed): paulc@kiama.nsw.gov	au	21/	15/13						
COMMENTS/SPECIAL	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	AL:			6						
ALS USE ONLY	SAMP MATRIX S	SAMPLE DETAILS MATRIX Solid(S) Water(W)		CONTAINER INFORMATION	TION	ANALYS	Netals are requ	ED includin	g SUITES (NB Suite Codes al (unfiltered bottle required) or Di	ALYSIS REQUIRED including SUITES (NB: Suite Codes must be listed to attract suite pres) Where Metals are required specify Total (unfinered bottle required) or Dissolved (field filered bottle required)	te pree) Additional Information
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	TDS	NT- 8 (TN, NH3, TP, TKN, NO2, NO3)	Alkalinity			Comments on likely contaminant levels. diutions, or samples requiring specific QC analysis etc.
51	ML-1	21/5/15 1055	٤	P-600mL, SP	2	<	~		NO ACC	Cess	Field Tests pH, EC, DO mg/L
14	ML-2	1 2050	×	P-500mL, SP	2		*	~			Field Tests pH, EC, DO mg/L
51	ML-3	1100	×	P-600mL, SP	2		*	~	No Ac	Cess	Field Tests pH, EC, DO mg/L
16	ML-4	1 1105	\$	P-500mL, SP	2	1	<	<	No	Aecess	Field Tests pH, EC, DO mg/L
11	ML-5	+ 1035	٤	P-500mL, SP	N	<	<				Field Tests pH, EC, DO mg/L
					TOTAL						

CLIENT:	Klama Municipal Council	TIDEADOLID					Pit the Cook Basil F adminifiancemy/r.com	Ph 0.3 6331 7158 E (aunoestion@stantyrio.com)	
OFFICE:	PO Box 75 Kiama NSW 2533		(Standard TA		Standard TAT (List due date	due date);		FOR LABORATORY USE ONLY (Circle)	miel
PROJECT:	Gerroa Landfill Quarterly	Rotect	e.g. Ultra Tra	nics)	Non Standard or urgent TAT (List due date):	gent TAT (List due	date):	Custody Seal Intact?	Ê
ORDER NUMBER:	- 11		MLS QUOIE NO.:	WI	WL/083/11		COC SEQUENCE NUMBER (Circle)	Free Ice / frozen ice bricks present upon receipt?	
PROJECT MANAGER:	: Paul Czulowski	CONTACT	CONTACT PH: 4232 0418	p.			COC: 1 2 3 4 5 6	7 Random Sample Temperature on Receipt	10
SAMPLER:	Craig Wilson	SAMPLER	SAMPLER MOBILE: 0408 264	KAN			3 4 5 6	7 Other comment	
COC emailed to ALS? (YES / NO)	(YES / NO)	EDD FORM	EDD FORMAT (or default):		RELINQUISHED BY:		RECEIVED BY:		RECEIVED BY:
mail Reports to (will	Email Reports to (will default to PM if no other addresses are listed): paulc@kiama.nsw.gov.au	paulc@ki	au		DATETIME	/	Hrvet G		
nail Invoice to (will c	Email Invoice to (will default to PM if no other addresses are listed)	are listed) paulo@kiama nsw.gov.au	au		2/6/2 1	Arr	DATERTIME /12 /5:00	DATE/TIME	DATE/TIME
OMMENTS/SPECIAL	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	OSAL:			. C.10		10		
ALS USE ONLY	SAM	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	ATION	ANALYSIS RE	ANALYSIS REQUIRED including SUITES (NB Suite Codes must be listed to attract suite price)	rust be listed to attract suite price)	
						Where Metals	Withre Metals are incurred. Specify Tetal (unfiltered bottle required) or Dissolved (feld filewed bottle required)		Additional Information
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL			Comment diutons, analysis e	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc
						Ammonia			
	MW 1D	21/6/13 1335	*	Sb	-	< /			
2	MW 1S	1 1330	\$	Sp	-	<	Envi	Environmental Division	
w	MW4	1305	*	qS	-	1	N	NSW South Coast	
4	MW5	1320	×	Sp	-	<		MA SOA OSS	
Ś	MW 6D	+ 1315	٤	SP	<u>د</u>	1		LVV 1301023	
							Telep	Telephone : 02 42253125	
						-			
			-						

Environmental Division

1	CER	TIFICATE OF ANALYSIS	
Work Order	EW1302492	Page	: 1 of 10
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541 AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	glenn.davies@alsglobal.com
Telephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
Facsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Annual	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 30-AUG-2013
Sampler	: Craig Wilson	Issue Date	: 10-SEP-2013
Site	:		
		No. of samples received	: 18
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Address 99 Kenny Street, Wollongong 2500

Environmental Division NSW Scutt Ceasy Riace 2005 036 125 Marth New 2025 foup An ALS Limited Company

www.alsglobal.com

Page	2 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EA015 : TDS may bias high for sample ID MW 1S due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- EK057G: LOR raised for Nitrite on sample ID (MW 11) due to sample matrix.
- EK059G: LOR raised for NOx on sample ID (MW 11) due to sample matrix.
- It has been noted that Ammonia is greater than TKN for sample ID (MW 6D), however this difference is within the limits of experimental variation.
- Microbiological Comment: Membrane filtration (MF) results for MW006 and MW023 are reported as an estimate (~) when the growth of bacteria on the filter membrane is counted <10cfu and/or >100cfu.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- MW023 is ALS's internal code and is equivalent to AS4276.9.

	NATA Accredited Laboratory 825	Signatories This document has been electronically	signed by the authorized signatories	indicated below. Electronic signing has been carried out in
NATA	Accredited for compliance with	compliance with procedures specified in 21 (Access diffetion Code and
	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Ankit Joshi	Inorganic Chemist	Sydney Inorganics
WORLD RECOGNISED		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
ACCREDITATION		Glenn Davies	Environmental Services Representative	Laboratory - Wollongong
		Hoa Nguyen	Senior Inorganic Chemist	Sydney Inorganics Sydney Inorganics
		Tony De Souza	Senior Microbiologist	Sydney Microbiology

cmound CAS Aumeer LOR EW1302482.002 EW1302482.003 EW1302482.004 EW1302482.005 AD15-Total Dissolved Solids Teat Dissolved Solids Sg10°C - 1 mgL S28 399 35 248 224 D037P: Aukalinity by PC. Titrator - <td< th=""><th>Sub-Matrix: WATER (Matrix: WATER)</th><th></th><th>Cli</th><th>ent sample ID</th><th>MW 1D</th><th>MW 1S</th><th>MW 3</th><th>MW 4</th><th>MW 5</th></td<>	Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW 1D	MW 1S	MW 3	MW 4	MW 5
Database Cont		Cli	ent sampl	ing date / time	30-AUG-2013 09:15	30-AUG-2013 09:25	30-AUG-2013 09:00	30-AUG-2013 07:30	30-AUG-2013 08:45
Trad Dask of Side (§ 1970)M on (Å)M on (Å)M 220SideSideM 224D037P: Alkalinky so CaCO3DMO-210-0011mgl.<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1 <th>Compound</th> <th>CAS Number</th> <th>LOR</th> <th>Unit</th> <th>EW1302492-001</th> <th>EW1302492-002</th> <th>EW1302492-003</th> <th>EW1302492-004</th> <th>EW1302492-005</th>	Compound	CAS Number	LOR	Unit	EW1302492-001	EW1302492-002	EW1302492-003	EW1302492-004	EW1302492-005
DD37: Alkalinity by PC Titrator Magnetic Second Secon	EA015: Total Dissolved Solids								
vjvroka kkalinity as CaCO3 DMO_2(0.001 1 mgL qf1 <f1< th=""> <th< td=""><td>Total Dissolved Solids @180°C</td><td></td><td>1</td><td>mg/L</td><td>328</td><td>309</td><td>363</td><td>248</td><td>224</td></th<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<>	Total Dissolved Solids @180°C		1	mg/L	328	309	363	248	224
Darbonate Alkalinity as CaCO3 3812-328 1 mgl.	ED037P: Alkalinity by PC Titrator								
Site arbon se Alkalinity as CaCO3 One of the set	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Image: Source of Alkalinity as CaCO3 Image: Source of Alkalinity Alkalinity as CaCO3 Image: Source	Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Construction Construction<	Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	316	128	227	215	170
Burlae as SQA - Turbidmetric14008-79-81mg/L636104D0436:15887-00-51mg/L2051921334D0351: Dissolved Major Cations740-70-21mg/L62247968.654Bodgmesium7440-70-21mg/L62.224.249.866.267.055.0Bodgmesium7440-70-21mg/L62.242.249.861.315.0Bodgmesium7440-70-21mg/L62.024.249.813.315.0Bodgmesium7440-70-21mg/L60.00.06.00.06.40.27.20.04.1Bodgmesium7440-70-21mg/L0.0100.0500.06.40.27.20.04.1Bodgmesium7439.84-50.01mg/L0.0100.0500.06.40.27.20.04.1Bodgmesion7439.84-50.01mg/L0.02.00.6.80.16.10.220.04.1Brone Agestrice1mg/L0.010.05.00.06.40.010.010.01Bodgmesion7684.41-70.1mg/L0.280.280.14<0.01	Total Alkalinity as CaCO3		1	mg/L	316	128	227	215	170
Display of the series analyser 1 model 0 model	ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Chloride 16887-00-6 1 mg/L 20 51 92 13 34 D093F: Dissolved Major Cations	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	6	3	6	10	4
D093F: Dissolved Major Cations r 0 0 0 Data Cations 7440.70-2 1 mg/L 62 24 79 68 54 Magnesium 7440.70-2 1 mg/L 24 8 8 6 7 Solum 7440.25-5 1 mg/L 22 42 49 13 15 Solum 7440.09-7 1 mg/L 22 42 49 31 5 Solution 7440.09-7 1 mg/L 0.010 0.050 0.064 0.272 0.041 5 G020F: Dissolved Metals by ICP-MS 0.010 0.050 0.064 0.027 0.041 3.22 K040P: Fluoride by PC Titrator 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.05 Ntitrate as N by Discrete Analyser 0.01 0.06 Ntitrate as N 0.01 mg/L 0.07 </td <td>ED045G: Chloride Discrete analyser</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ED045G: Chloride Discrete analyser								
Calcium 7440-70-2 1 mg/L 62 24 79 68 54 Magnesium 7439-95-4 1 mg/L 24 8 8 6 7 Sodium 7440-25-5 1 mg/L 22 42 49 13 15 Sodium 7440-25-5 1 mg/L 15 2 3 4 5 G020F: Dissolved Metals by ICP-MS mg/L 0.010 0.050 0.064 0.272 0.041 Good 7439-89-5 0.05 mg/L -0.05 29.0 6.86 1.61 3.22 K040P: Fluoride by PC Titrator mg/L 0.22 0.2 0.1 0.2 0.1 K0556: Ammonia as N by Discrete Analyser mamonia as N by Discrete Analyser <td< td=""><td>Chloride</td><td>16887-00-6</td><td>1</td><td>mg/L</td><td>20</td><td>51</td><td>92</td><td>13</td><td>34</td></td<>	Chloride	16887-00-6	1	mg/L	20	51	92	13	34
Magnesium Transport Magnesium Magnesium <t< td=""><td>ED093F: Dissolved Major Cations</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ED093F: Dissolved Major Cations								
Solition 7440-03- 1 mg/L 22 42 49 13 15 Potassium 7440-09-7 1 mg/L 15 2 3 4 5 G020F: Dissolved Metals by ICP-MS 3 4 5 Manganese 7439-96-5 0.001 mg/L 0.010 0.050 0.064 0.272 0.041 Tor 7439-96-5 0.01 mg/L <0.05	Calcium	7440-70-2	1	mg/L	62	24	79	68	54
Protessium T44.009-7 1 mg/L 15 2 3 4 5 G020F: Dissolved Metals by ICP-MS	Magnesium	7439-95-4	1	mg/L	24	8	8	6	7
G020F: Dissolved Metals by ICP-MS Wanganese 7439-89-6 0.001 mg/L 0.010 0.050 0.064 0.272 0.041 ron 7439-89-6 0.05 mg/L <0.05 29.0 6.86 1.61 3.22 K040P: Fluoride by PC Titrator Img/L 0.2 0.2 0.1 0.2 0.1 K055G: Ammonia as N by Discrete Analyser Img/L 0.2 0.2 0.1 0.2 0.1 K055G: Nitrite as N by Discrete Analyser Img/L 0.07 <0.01 <0.01 <0.06 K058G: Nitrate as N 14797-55-8 0.01 mg/L 0.97 <0.01 <0.01 0.09 0.06 K058G: Nitrite plus Nitrate as N 14797-55-8 0.01 mg/L 1.04 <0.01 <0.01 0.09 0.07 K058G: Nitrite plus Nitrate as N 0.01 mg/L 3.4 1.3 0.4 0.6 1.1 K058G: Nitrite plus Nitrate as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 <td>Sodium</td> <td>7440-23-5</td> <td>1</td> <td>mg/L</td> <td>22</td> <td>42</td> <td>49</td> <td>13</td> <td>15</td>	Sodium	7440-23-5	1	mg/L	22	42	49	13	15
Maganese 7439-96-5 0.001 mg/L 0.010 0.050 0.064 0.272 0.041 ron 7439-86-6 0.05 mg/L <0.05	Potassium	7440-09-7	1	mg/L	15	2	3	4	5
Maganese 7439-96-5 0.001 mg/L 0.010 0.050 0.064 0.272 0.041 ron 7439-86-6 0.05 mg/L <0.05	EG020F: Dissolved Metals by ICP-MS								
K040P: Fluoride by PC Titrator Fluoride 16984-48-8 0.1 mg/L 0.2 0.2 0.1 0.2 0.1 K055G: Ammonia as N by Discrete Analyser Ammonia as N 7664-41-7 0.01 mg/L 2.88 0.28 0.14 <0.01 0.06 K057G: Nitrite as N by Discrete Analyser 0.01 mg/L 0.07 <0.01 <0.01 <0.01 0.06 K058G: Nitrate as N by Discrete Analyser 0.01 mg/L 0.07 <0.01 <0.01 <0.01 0.01 0.01 K058G: Nitrate as N by Discrete Analyser 0.01 mg/L 0.97 <0.01 <0.01 <0.01 0.09 0.06 K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser 0.01 mg/L 1.04 <0.01 <0.01 0.09 0.07 K051G: Total Kjeldahl Nitrogen as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K052G: Total Nitrogen as N 0.1<	Manganese		0.001	mg/L	0.010	0.050	0.064	0.272	0.041
Fluoride 16984-48-8 0.1 mg/L 0.2 0.2 0.1 0.2 0.1 KO55G: Ammonia as N by Discrete Analyser Ammonia as N 7664-41.7 0.01 mg/L 2.88 0.28 0.14 <0.01	Iron	7439-89-6	0.05	mg/L	<0.05	29.0	6.86	1.61	3.22
Fluoride 16984-48-8 0.1 mg/L 0.2 0.2 0.1 0.2 0.1 KO55G: Ammonia as N by Discrete Analyser Ammonia as N 7664-41.7 0.01 mg/L 2.88 0.28 0.14 <0.01	EK040P: Fluoride by PC Titrator								
Annonia as N 7664-41-7 0.01 mg/L 2.88 0.28 0.14 <0.01 0.06 K057G: Nitrite as N by Discrete Analyser 0.01 mg/L 0.07 <0.01	Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.1	0.2	0.1
Annonia as N 7664-41-7 0.01 mg/L 2.88 0.28 0.14 <0.01 0.06 K057G: Nitrite as N by Discrete Analyser 0.01 mg/L 0.07 <0.01	EK055G: Ammonia as N by Discrete A	nalyser							
Nitrite as N 0.01 mg/L 0.07 <0.01 <0.01 <0.01 0.01 K058G: Nitrate as N by Discrete Analyser 14797-55-8 0.01 mg/L 0.97 <0.01	Ammonia as N		0.01	mg/L	2.88	0.28	0.14	<0.01	0.06
Nitrite as N 0.01 mg/L 0.07 <0.01 <0.01 <0.01 0.01 K058G: Nitrate as N by Discrete Analyser 14797-55-8 0.01 mg/L 0.97 <0.01	EK057G: Nitrite as <u>N by Discrete Anal</u>	lyser							
Nitrate as N 14797-55-8 0.01 mg/L 0.097 <0.01 0.01 0.09 0.06 K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser 0.01 Mg/L 1.04 <0.01	Nitrite as N		0.01	mg/L	0.07	<0.01	<0.01	<0.01	0.01
Nitrate as N 14797-55-8 0.01 mg/L 0.097 <0.01 0.01 0.09 0.06 K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser 0.01 Mg/L 1.04 <0.01	EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrite + Nitrate as N 0.01 mg/L 1.04 <0.01 <0.01 0.09 0.07 K061G: Total Kjeldahl Nitrogen By Discrete Analyser 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	Nitrate as N		0.01	mg/L	0.97	<0.01	<0.01	0.09	0.06
Nitrite + Nitrate as N 0.01 mg/L 1.04 <0.01 <0.01 0.09 0.07 K061G: Total Kjeldahl Nitrogen By Discrete Analyser 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	EK059G: Nitrite pl <u>us Nitrate as N (NO</u>	x) by Dis <u>crete Ana</u>	vser _						
Total Kjeldahl Nitrogen as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 4.4 1.3 0.4 0.6 1.1 Fotal Nitrogen as N 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	Nitrite + Nitrate as N		-	mg/L	1.04	<0.01	<0.01	0.09	0.07
Total Kjeldahl Nitrogen as N 0.1 mg/L 3.4 1.3 0.4 0.6 1.1 K062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 4.4 1.3 0.4 0.6 1.1 Fotal Nitrogen as N 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	EK061G: Total Kieldahl Nitro <u>gen By D</u>	iscrete Analvser							
Total Nitrogen as N 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	Total Kjeldahl Nitrogen as N		0.1	mg/L	3.4	1.3	0.4	0.6	1.1
Total Nitrogen as N 0.1 mg/L 4.4 1.3 0.4 0.7 1.2	EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alvser _						
K067G: Total Phosphorus as P by Discrete Analyser	Total Nitrogen as N			mg/L	4.4	1.3	0.4	0.7	1.2
	EK067G: Total Phosphorus as P by Di	iscrete Analyser							

Page	: 4 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW 1D	MW 1S	MW 3	MW 4	MW 5
	C	lient sampli	ng date / time	30-AUG-2013 09:15	30-AUG-2013 09:25	30-AUG-2013 09:00	30-AUG-2013 07:30	30-AUG-2013 08:45
Compound	CAS Number	LOR	Unit	EW1302492-001	EW1302492-002	EW1302492-003	EW1302492-004	EW1302492-005
EK067G: Total Phosphorus as P by D	iscrete Analyser - C	ontinued						
Total Phosphorus as P		0.01	mg/L	0.02	0.31	0.16	0.86	0.33
EN055: Ionic Balance								
Total Anions		0.01	meq/L	7.01	4.06	7.26	4.87	4.44
Total Cations		0.01	meq/L	6.75	4.04	6.99	4.69	4.27
Ionic Balance		0.01	%	1.89	0.23	1.88	1.98	1.94
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.5	6.5	7.6	6.9	7.7
Electrical Conductivity (Non Compensated)		1	μS/cm	624	418	704	470	427
Dissolved Oxygen		0.01	mg/L	1.62	2.51	1.84	2.49	1.62
Redox Potential		0.1	mV	-78.0	-57.0	-137	-34.0	-147
Depth		0.01	m	3.03	3.16	3.48	3.81	3.48
EP002: Dissolved Organic Carbon (D0	C)							
Dissolved Organic Carbon		1	mg/L	15	58	12	12	12

EADLS: Cloid Dissolved Solids (************************************	Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW 6D	MW 6S	MW 7D	MW 7S	MW 9
Control Contro <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th></th><th>Cli</th><th>ent sampl</th><th>ing date / time</th><th>30-AUG-2013 08:00</th><th>30-AUG-2013 08:10</th><th>30-AUG-2013 08:25</th><th>30-AUG-2013 08:35</th><th>30-AUG-2013 09:55</th></thco<></thcontrol<></thcontrol<>		Cli	ent sampl	ing date / time	30-AUG-2013 08:00	30-AUG-2013 08:10	30-AUG-2013 08:25	30-AUG-2013 08:35	30-AUG-2013 09:55
Total loss/ode Gaide Gaide CNoNoNoSoladED33P: Akialinity by CC Titrator<	Compound	CAS Number	LOR	Unit	EW1302492-006	EW1302492-007	EW1302492-008	EW1302492-009	EW1302492-010
Characteristic by PD Titrator Number of the second se	EA015: Total Dissolved Solids								
Mydroxio Akkalinity as GaCO3 DMO 2+0.001 1 mgL q-1 <	Total Dissolved Solids @180°C		1	mg/L	496	309	298	201	5040
Carbonate Alkalinity as CaCO3 3812-32.6 1 mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ED037P: Alkalinity by PC Titrator								
Bicarbonate Alkalihiy as CaCO3 T1 422 1 mg/L 375 217 250 109 135 Total Alkalihiy as CaCO3	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Total Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Constraining for Christian Probability of Christ	Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	375	217	250	109	135
Sulfa so QA - Turbidmetric1400.79-810mg/L10734189372CD4G4:<	Total Alkalinity as CaCO3		1	mg/L	375	217	250	109	135
D045G: Chloride Discrete analyser Magnetic	ED041G: Sulfate (Turbidimetric) as SC	O4 2- by DA							
Chloride 16887-00-6 1 mg/L 14 34 16 48 2590 D093F-D1solved Magne Sturn <td< td=""><td>Sulfate as SO4 - Turbidimetric</td><td>14808-79-8</td><td>1</td><td>mg/L</td><td>107</td><td>34</td><td>18</td><td>9</td><td>372</td></td<>	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	107	34	18	9	372
Dissolved Major Cations 740-70-2 1 mg/L 141 75 76 24 78 Galcium 7439-95-4 1 mg/L 10 7 7 5 187 Sodium 7440-25-5 1 mg/L 16 30 17 40 1420 Potasium 7440-09-7 1 mg/L 15 6 6 4 62 GG020F Dissolved Matis by ICP-MS mg/L 0.161 0.019 0.064 0.010 0.010 Iron 739-86-5 0.001 mg/L 0.011 0.019 0.064 0.010 0.010 Iron 7439-86-5 0.001 mg/L 0.04 0.4 0.2 <0.1	ED045G: Chloride Discrete analyser								
Calcium 7440-70-2 1 mg/L 141 75 76 24 78 Magnesium 7490-25 1 mg/L 100 7 7 5 167 Sodium 7440-25 1 mg/L 168 30 17 40 420 Potasium 7440-25 1 mg/L 15 6 6 4 62 G020F: Dissolved Metals by ICP-MS mg/L 0.16 0.019 0.064 0.010 0.010 Group 7439-36.5 0.00 mg/L 0.07 1.17 0.09 0.66 0.68 K040P: Fluoride by PC Titrator mg/L 0.4 0.4 0.2 <0.1	Chloride	16887-00-6	1	mg/L	14	34	16	48	2590
Calcium 7440-70-2 1 mg/L 141 75 76 24 78 Magnesium 7490-25 1 mg/L 100 7 7 5 167 Sodium 7440-25 1 mg/L 168 30 17 40 420 Potasium 7440-25 1 mg/L 15 6 6 4 62 G020F: Dissolved Metals by ICP-MS mg/L 0.16 0.019 0.064 0.010 0.010 Group 7439-36.5 0.00 mg/L 0.07 1.17 0.09 0.66 0.68 K040P: Fluoride by PC Titrator mg/L 0.4 0.4 0.2 <0.1	ED093F: Dissolved Major Cations								
Cont Cont <th< td=""><td>Calcium</td><td>7440-70-2</td><td>1</td><td>mg/L</td><td>141</td><td>75</td><td>76</td><td>24</td><td>78</td></th<>	Calcium	7440-70-2	1	mg/L	141	75	76	24	78
Protessium Trid Loo Image	Magnesium	7439-95-4	1	mg/L	10	7	7	5	187
Construction Construction<	Sodium	7440-23-5	1	mg/L	16	30	17	40	1420
Manganese 7439-96-5 0.001 mg/L 0.0161 0.019 0.064 0.010 0.010 Iron 7439-96-6 0.05 mg/L 0.07 1.17 0.09 0.66 0.58 K040P: Fluoride by PC Titrator	Potassium	7440-09-7	1	mg/L	15	6	6	4	62
Manganese 7439-96-5 0.001 mg/L 0.0161 0.019 0.064 0.010 0.010 Iron 7439-96-6 0.05 mg/L 0.07 1.17 0.09 0.66 0.58 K040P: Fluoride by PC Titrator	EG020F: Dissolved Metals by ICP-MS								
K040P: Fluoride by PC Titrator Image <	Manganese		0.001	mg/L	0.161	0.019	0.064	0.010	0.010
Fluoride 16984-8-8 0.1 mg/L 0.4 0.4 0.2 <0.1 0.2 KO55G: Ammonia as N by Discrete Analyser Ammonia as N 7664-41-7 0.01 mg/L 11.3 0.29 2.43 0.91 0.84 KKO5G: Nitrite as N by Discrete Analyser Img/L 11.3 0.29 2.43 0.91 0.84 KKO5G: Nitrite as N by Discrete Analyser Img/L 0.06 0.92 0.10 0.04 <0.01	Iron	7439-89-6	0.05	mg/L	0.07	1.17	0.09	0.66	0.58
Fluoride 16984-8-8 0.1 mg/L 0.4 0.4 0.2 <0.1 0.2 KO55G: Ammonia as N by Discrete Analyser Ammonia as N 7664-41-7 0.01 mg/L 11.3 0.29 2.43 0.91 0.84 KKO5G: Nitrite as N by Discrete Analyser Img/L 11.3 0.29 2.43 0.91 0.84 KKO5G: Nitrite as N by Discrete Analyser Img/L 0.06 0.92 0.10 0.04 <0.01	EK040P: Fluoride by PC Titrator								
Ammonia as N 7664-41-7 0.01 mg/L 11.3 0.29 2.43 0.91 0.84 K057G: Nitrite as N by Discrete Analyser 0.01 mg/L 0.06 0.92 0.10 0.04 <0.01	Fluoride	16984-48-8	0.1	mg/L	0.4	0.4	0.2	<0.1	0.2
Ammonia as N 7664-41-7 0.01 mg/L 11.3 0.29 2.43 0.91 0.84 K057G: Nitrite as N by Discrete Analyser 0.01 mg/L 0.06 0.92 0.10 0.04 <0.01	EK055G: Ammonia as N by Discrete A	Analyser							
Nitrite as N 0.01 mg/L 0.06 0.92 0.10 0.04 <0.01 KK058G: Nitrate as N by Discrete Analyser Nitrate as N 14797-55-8 0.01 mg/L 0.96 1.05 0.49 0.16 <0.01	Ammonia as N		0.01	mg/L	11.3	0.29	2.43	0.91	0.84
Nitrite as N 0.01 mg/L 0.06 0.92 0.10 0.04 <0.01 KK058G: Nitrate as N by Discrete Analyser Nitrate as N 14797-55-8 0.01 mg/L 0.96 1.05 0.49 0.16 <0.01	EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrate as N 14797-55-8 0.01 mg/L 0.96 1.05 0.49 0.16 <0.01 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser mg/L 1.02 1.97 0.59 0.20 <0.01	Nitrite as N		0.01	mg/L	0.06	0.92	0.10	0.04	<0.01
Nitrate as N 14797-55-8 0.01 mg/L 0.96 1.05 0.49 0.16 <0.01 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser mg/L 1.02 1.97 0.59 0.20 <0.01	EK058G: Nitrate as N by Discrete Ana	alvser							
Nitrite + Nitrate as N 0.01 mg/L 1.02 1.97 0.59 0.20 <0.01 EK061G: Total Kjeldahl Nitrogen By Discrete Analyser 0.1 mg/L 11.2 1.1 2.6 1.5 1.6 EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 3.1 3.2 1.7 1.6	Nitrate as N		0.01	mg/L	0.96	1.05	0.49	0.16	<0.01
Nitrite + Nitrate as N 0.01 mg/L 1.02 1.97 0.59 0.20 <0.01 EK061G: Total Kjeldahl Nitrogen By Discrete Analyser 0.1 mg/L 11.2 1.1 2.6 1.5 1.6 EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 3.1 3.2 1.7 1.6	EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	vser					1	
Total Kjeldahl Nitrogen as N 0.1 mg/L 11.2 1.1 2.6 1.5 1.6 EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 12.2 3.1 3.2 1.7 1.6	Nitrite + Nitrate as N			mg/L	1.02	1.97	0.59	0.20	<0.01
Total Kjeldahl Nitrogen as N 0.1 mg/L 11.2 1.1 2.6 1.5 1.6 EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser 0.1 mg/L 12.2 3.1 3.2 1.7 1.6	EK061G: Total Kieldahl Nitrogen By D	iscrete Analyser							
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser mg/L 12.2 3.1 3.2 1.7 1.6	Total Kjeldahl Nitrogen as N		0.1	mg/L	11.2	1.1	2.6	1.5	1.6
Total Nitrogen as N 0.1 mg/L 12.2 3.1 3.2 1.7 1.6		NOx) by Discrete An	alvser _						
K067G: Total Phosphorus as P by Discrete Analyser	Total Nitrogen as N			mg/L	12.2	3.1	3.2	1.7	1.6
	<u></u>	iscrete Analyser							

Page	: 6 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

Sub-Matrix: WATER (Matrix: WATER)	ub-Matrix: WATER (Matrix: WATER) Client sa		ent sample ID	MW 6D	MW 6S	MW 7D	MW 7S	MW 9
	C	ient sampli	ng date / time	30-AUG-2013 08:00	30-AUG-2013 08:10	30-AUG-2013 08:25	30-AUG-2013 08:35	30-AUG-2013 09:55
Compound	CAS Number	LOR	Unit	EW1302492-006	EW1302492-007	EW1302492-008	EW1302492-009	EW1302492-010
EK067G: Total Phosphorus as P by Di	screte Analyser - C	ontinued						
Total Phosphorus as P		0.01	mg/L	2.52	0.12	1.66	0.96	0.12
EN055: Ionic Balance								
Total Anions		0.01	meq/L	10.1	6.00	5.82	3.72	83.5
Total Cations		0.01	meq/L	9.80	5.78	5.60	3.60	82.6
Ionic Balance		0.01	%	1.64	1.89	1.96	1.63	0.54
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.2	7.1	7.4	7.4	6.6
Electrical Conductivity (Non Compensated)		1	µS/cm	896	474	528	381	7820
Dissolved Oxygen		0.01	mg/L	1.58	1.90	1.56	1.77	2.73
Redox Potential		0.1	mV	13.0	-57.0	-28.0	-39.0	77.0
Depth		0.01	m	4.65	4.40	4.40	4.26	1.92
EP002: Dissolved Organic Carbon (DC	DC)							
Dissolved Organic Carbon		1	mg/L	21	9	13	8	37

Page	: 7 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW 10	MW 11	ML-1	ML-2	ML-3
	Cli	ent sampli	ng date / time	30-AUG-2013 09:45	30-AUG-2013 10:20	30-AUG-2013 10:40	30-AUG-2013 10:35	30-AUG-2013 10:45
Compound	CAS Number	LOR	Unit	EW1302492-011	EW1302492-012	EW1302492-013	EW1302492-014	EW1302492-015
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	3760	671		4260	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1		<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1		<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	53		160	
Total Alkalinity as CaCO3		1	mg/L	9	53		160	
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	304	37			
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	1760	275			
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	44	6			
Magnesium	7439-95-4	1	mg/L	136	14			
Sodium	7440-23-5	1	mg/L	1100	190			
Potassium	7440-09-7	1	mg/L	48	13			
ED093T: Total Major Cations								
Calcium	7440-70-2	1	mg/L				79	
Magnesium	7439-95-4	1	mg/L				140	
Sodium	7440-23-5	1	mg/L				1200	
Potassium	7440-09-7	1	mg/L				52	
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.014	0.004			
Iron	7439-89-6	0.05	mg/L	0.54	0.68			
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L				0.052	
Iron	7439-89-6	0.05	mg/L				1.45	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	<0.1	0.2			
EK055G: Ammonia as N by Discrete Analy	vser							
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.02		3.19	
EK057G: Nitrite as N by Discrete Analyse								
Nitrite as N		0.01	mg/L	<0.01	<0.10		0.02	
EK058G: Nitrate as N by Discrete Analys							1	I

Page	: 8 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

Sub-Matrix: WATER (Matrix: WATER)		Cl	ient sample ID	MW 10	MW 11	ML-1	ML-2	ML-3
	CI	ient sampl	ing date / time	30-AUG-2013 09:45	30-AUG-2013 10:20	30-AUG-2013 10:40	30-AUG-2013 10:35	30-AUG-2013 10:45
Compound	CAS Number	LOR	Unit	EW1302492-011	EW1302492-012	EW1302492-013	EW1302492-014	EW1302492-015
EK058G: Nitrate as N by Discrete Ana	lyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	0.04	<0.10		0.15	
EK059G: Nitrite plus Nitrate as N (NO)	() by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.04	<0.10		0.17	
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	6.1	3.1		3.6	
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discre <u>te A</u> r	nalyser						
` Total Nitrogen as N		0.1	mg/L	6.1	3.1		3.8	
EK067G: Total Phosphorus as P by Dis	screte Analyser							
Total Phosphorus as P		0.01	mg/L	0.45	0.24		0.04	
EN055: Ionic Balance								
Total Anions		0.01	meq/L	56.6	9.81			
Total Cations		0.01	meq/L	62.5	10.0			
Ionic Balance		0.01	%	4.93	2.33			
EN67 PK: Field Tests								
рН		0.1	pH Unit	5.4	6.2		7.0	
Electrical Conductivity (Non Compensated)		1	µS/cm	6720	1080		6880	
Dissolved Oxygen		0.01	mg/L	3.02	1.97		4.97	
Redox Potential		0.1	mV	161	38.0		58.0	
Depth		0.01	m	2.24	2.34			
Field Observations		0.01				No Access		No Access
EP002: Dissolved Organic Carbon (DO	C)							
Dissolved Organic Carbon		1	mg/L	24	64			
Microbiological parameters								
Enterococci		1	CFU/100mL				20	
MW006: Faecal Coliforms & E.coli by M	ΛF							
Faecal Coliforms		1	CFU/100mL				24	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ML-4	ML-5	Blank		
	Cli	ent sampli	ng date / time	30-AUG-2013 10:50	30-AUG-2013 10:05	30-AUG-2013 07:40		
Compound	CAS Number	LOR	Unit	EW1302492-016	EW1302492-017	EW1302492-018		
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L		936			
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L		<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L		<1			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L		148			
Total Alkalinity as CaCO3		1	mg/L		148			
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L			<1		
Magnesium	7439-95-4	1	mg/L			<1		
Sodium	7440-23-5	1	mg/L			<1		
Potassium	7440-09-7	1	mg/L			<1		
ED093T: Total Major Cations								
Calcium	7440-70-2	1	mg/L		48			
Magnesium	7439-95-4	1	mg/L		36			
Sodium	7440-23-5	1	mg/L		274			
Potassium	7440-09-7	1	mg/L		16			
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L			<0.001		
Iron	7439-89-6	0.05	mg/L			<0.05		
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L		0.083			
Iron	7439-89-6	0.05	mg/L		1.99			
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L		2.60			
EK057G: Nitrite as N by Discrete Analy	yser							
Nitrite as N		0.01	mg/L		<0.01			
EK058G: Nitrate as N by Discrete Anal	lyser							
Nitrate as N	14797-55-8	0.01	mg/L		0.06			
EK059G: Nitrite plus Nitrate as N (NOx	() by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L		0.06			
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L		3.1			
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alys <u>er</u>						

Page	: 10 of 10
Work Order	: EW1302492
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Annual

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	ML-4	ML-5	Blank	
	CI	ient sampli	ing date / time	30-AUG-2013 10:50	30-AUG-2013 10:05	30-AUG-2013 07:40	
Compound	CAS Number	LOR	Unit	EW1302492-016	EW1302492-017	EW1302492-018	
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete Ar	nalyser - (Continued				
[^] Total Nitrogen as N		0.1	mg/L		3.2		
EK067G: Total Phosphorus as P by Disc	rete Analyser						
Total Phosphorus as P		0.01	mg/L		0.03		
EN67 PK: Field Tests							
рН		0.1	pH Unit		7.0		
Electrical Conductivity (Non Compensated)		1	µS/cm		1810		
Dissolved Oxygen		0.01	mg/L		3.91		
Redox Potential		0.1	mV		62.0		
Field Observations		0.01		No Access			
Microbiological parameters							
Enterococci		1	CFU/100mL		~16		
MW006: Faecal Coliforms & E.coli by MI							
Faecal Coliforms		1	CFU/100mL		~6		

												2
CLIENT:	Kiama Municipal Council		TURNAROU	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):	ist due date):	1				FOR LABORATOR	FOR LABORATORY USE ONLY (Circle)
OFFICE:	PO Box 75 Klama NSW 2533		(Standard TAT	(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	Non Standard or urgent TAT		(List due date):	÷			Custody Seal Intact?	Yes No
PROJECT:	Gerroa Landfill Annual		ALS QUOTE NO .:		WL/083/11			COC SEQUE	COC SEQUENCE NUMBER (Circle)	R (Circle)	Free Ics / frozen ice bricks present upon	Yas
ORDER NUMBER:							COC	4 2	3 4	5 6	7 Random Sample Temperature on Receipt	sperature on Receipt 'C
PROJECT MANAGER:	Paul Czulowski	CONTACT P	CONTACT PH: 4232 0418	8			OF	1 2	ω 4	5	7 Other comment	
SAMPLER:	Craig Wilson	SAMPLER M	SAMPLER MOBILE: 0408 251 560		RELINQUISHED BY:		REC	RECEIVED BY:		7	RELINQUISHED BY	Environmental Division
COC emailed to ALS? (YES /	YES / NO)	EDD FORMA	EDD FORMAT (or default):		Craig Lin	1	+	Ameta		2		NSW South Coast
Email Reports to (will de	Email Reports to (will default to PM if no other addresses are listed); paulo@kiama.nsw.gov.au, juliem@kiama.nsw.gov	e listed): paulc@kiama.nsw.gov	au, juliem@k	au	DATERTIME		DAT	DATE/TIME		1	DATE/TIME	Work Order
Email Invoice to (will de	Email Invoice to (will default to PM if no other addresses are listed):	listed): paulc@klama.nsw.gov.au, juliam@klama.nsw.gov.au	r.au, juliem@k	dama.nsw.gov.au	30/0/13	113	5 30	51.8.06	11:50	50		WOR CIVE
COMMENTS/SPECIAL I	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	AL:										EW7302492
ALS USE ONLY	SAMP MATRIX:	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	MATION	ANALY	SIS REQUIR e Metals are rec	RED Including pulted specify Tot	3 SUITES (NE	 Suite Codes e recuired) or Di 	ALYSIS REQUIRED Including SUITES (NB. Suite Codes must be listed to attra Where Metals are required specify Total (unfiltered bother required) or Dissolved (field Stared both	
							, TKN,	lkalinity,				Telephone 2 02 42253125
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	BOTTLES	TDS	NT- 8 (TN, NH3, TP, NO2, NO3)	NT -2A (Cl, SO4, Al Fluoride)	DOC (Filtered)	(Dissolved Filtered) NT -1 (Mg, Ca, Na, I		
1	MW 1D	30/2/23 915	*	P-500mL, SP, VS, N	4		•	<		1		VSI Field Tests - pH, EC, DO, Depth
2	SI: MM		٤	P-500mL, SP, VS, N	4	<	1	~		1		VSI Field Tests - pH, EC, DO, Depth
3	S MM	900	¥	P-500mL, SP, VS, N	4	<	<	4	1	*		VSI Field Tests - pH, EC, DO, Depth
4	MW 4	730	×	P-500mL, SP, VS, N	4	<		1	1	1		VSI Field Tests - pH, EC, DO, Depth
5	MW 5	558	٤	P-500mL, SP, VS, N	4	<	4	~	~	*		YSI Field Tests - pH, EC, DO, Depth
6.	MW 6D	800	¥	P-500mL, SP, VS, N	4	*		*	•	*		YSI Field Tests - pH, EC, DO, Depth
7	S9 MM	018	¥	P-500mL, SP, VS, N	4		<		1	1		VSI Field Tests - pH, EC, DO, Depth
8	MW 7D	825	W	P-500mL, SP, VS, N	4	~	<	~	•	<		VSI Field Tests - pH, EC, DO, Depth
9	MW 7S	835	8	P-500mL, SP, VS, N	4	<		~	1	<		VSI Field Tests - pH, EC, DO, Depth
10	6 MW	955	¥	P-500mL, SP, VS, N	4	、	<			5		VSI Field Tests - pH, EC, DO, Depth
11	MW10	526	×	P-500mL, SP, VS, N	4		1	1	*	<		VSI Fleid Tests - pH, EC, DO, Depth
12	MW 11	+ 1020	v	P-500mL, SP, VS, N	4	×	<	•	*	<		YSI Field Tests - pH, EC, DO, Depth

FNFM 204

m	
z	
Ð	
≤	
20	
5	

		and the state of the state of the second state			1 1020 VILL 1815 19 VILLE STORES & MUNICIPAL STORE STORES			- The second second	11 Sector And a sector of substantial manufacture of a sector of the		I was please to a	Tell waterate 20 mile namines with Balancian a film	INTE STUD
CLIENT: K	Kiama Municipal Council		TURNAROU	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):	due date):					FORL	FOR LABORATORY USE ONLY (Circle)	ONLY (Circle)
	PO Box 75 Kiama NSW 2533		(Standard TAT	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List due date):	pent TAT (Lis	due date):				Custody	Custody Seal Intact?	Yes No N/A
PROJECT: G	Gerroa Landfill Annual		ALS QUOTE NO .:	NO.: W	WL/083/11			COC SEQUENCE NUMBER (Circle)	VCE NUMBER	(Circle)	Free ice /	Free ice / frozen ice bricks present upon receipt?	Yes No
ORDER NUMBER:							COC;	1 2	3	6	7 Randon	Random Sample Temperature on Receipt	ċ
ER:	Paul Czulowski	CONTACT P	CONTACT PH: 4232 0418				OF	1 2	3	5	7 Other ci	Other comment:	
	Cralg Wilson	SAMPLER N	SAMPLER MOBILE: 0408 251 560	251 560	RELINQUISHED BY:		RECE	RECEIVED BY:		70	RELINQUISHED BY:	IED BY:	RECEIVED BY:
COC emailed to ALS? (YES /	(ES / NO)	EDD FORM	EDD FORMAT (or default):		Craig CL		_			_			
Email Reports to (will defa	Email Reports to (will default to PM if no other addresses are listed):	e listed):			DATEITIME		DATE/TIME	TIME		D	DATE/TIME		DATE/TIME:
Email Invoice to (will defau	Email invoice to (will default to PM if no other addresses are listed):	(isted):			30/0/13								
COMMENTS/SPECIAL HA	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	AL											
ALS USE ONLY	SAMP MATRIX :	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	RMATION	ANALYSI	ALYSIS REQUIRED I Where Metais are required.	D Including red, specify Tota	SUITES (NE	. Suite Codes required) or Dis	must be liste solved (field fil	ANALYSIS REQUIRED Including SUITES (NB: Suite Codes must be listed to attract suite prop) Where Metals are required, specify Total (unfiltered bothe required) or Dissolved (field filtered bothe required)) Additional information
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	VE TOTAL BOTTLES	DS, Total Alkalinity	NT- 8 (TN, NH3, TP, TKN, NO2, NO3)	Dissolved Filtered) Fe, Mn, NT -1 (Mg, Ca, Na, K)	Total) Fe, Mn, Mg, Ca, Na, K	aecal Coliforms, Interococci			Comments on likely contaminant levels, diurkions, or samples requiring specific QC analysis etc
13	ML-1	30/8/13 1050	W	P-500mL, SP, N, ST	т 4		1		*)	NOF	Access	VSI Field Tests - pH, EC, DO, ORP, Depth
14	ML-2		¥	P-500mL, SP, N, ST	т 4	~	1		<	•			VSI Field Tests - pH, EC, DO, ORP, Depth
5	ML-3	1045	W	P-500mL, SP, N, ST	7 4	<	*		4	1	No	Access	VSI Field Tests - pH, EC, DO, ORP, Depth
16	ML-4	1050	W	P-500mL, SP, N, ST	T 4	<	<		<	× 7	Nov	Access	VSI Field Tests - pH, EC, DO, ORP, Depth
17	ML-5	1005	¥	P-500mL, SP, N, ST	T 4	*	<		<	1			VSI Field Tests - pH, EC, DO, ORP, Depth
81	Blank	+ 740	٤	z	-			1					
					10101								

Environmental Division

0	CER	TIFICATE OF ANALYSIS	
Work Order	EW1302735	Page	: 1 of 3
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541 AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
elephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
acsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 20-SEP-2013
Sampler	: Craig Wilson	Issue Date	: 26-SEP-2013
Site			
		No. of samples received	: 2
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ACCREDITATION

	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronic carried out in compliance with procedure		signatories indicated below. Electronic si	igning has been
NAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category	
\mathbf{v}		Ankit Joshi	Inorganic Chemist	Sydney Inorganics	

Address 99 Kenny Street, Wollongong 2500

Environmental Division NSV/304tth 20cestly.Rtaces42009.986 1029. Nartio Nov/aL256 toup An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 3
Work Order	: EW1302735
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

= This result is computed from individual analyte detections at or above the level of r

• Sites - ML1, ML-3 & ML-4 No access at time of sampling.

Page	: 3 of 3
Work Order	: EW1302735
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ML-2	ML-5	 	
	Clie	ent samplii	ng date / time	20-SEP-2013 13:20	20-SEP-2013 13:10	 	
Compound	CAS Number	LOR	Unit	EW1302735-001	EW1302735-002	 	
EK055G: Ammonia as N by Discrete An	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.04	 	

		Deer	
Nork Order	[:] EW1303404	Page	: 1 of 6
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541
			AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
Felephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
acsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Quarterly	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 27-NOV-2013
Sampler	: Craig Wilson	Issue Date	: 05-DEC-2013
Site	:		
		No. of samples received	: 17
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

~	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been electronically	signed by the authorized signatories	indicated below. Electronic signing has been
NATA	Accredited for compliance with	carried out in compliance with procedures sp	ecified in 21 CFR Part 11.	
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Ankit Joshi	Inorganic Chemist Inorganic Chemist	Sydney Inorganics
WORLD RECOGNISED		Ashesh Patel Glenn Davies	Environmental Services Representative	Sydney Inorganics Laboratory - Wollongong

Address 99 Kenny Street, Wollongong 2500

Environmental Division NSW South Coast Riaco Poposo 125 Parts New ALS Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EK057G-EK059G: LOR raised for Nitrite and NOx analysis on sample ID (MW7D ,MW7S) due to sample matrix.
- EK058G: LOR raised for Nitrate analysis on sample ID (MW7D ,MW7S) due to sample matrix.
- Sites ML1, ML-3 & ML-4 No access at time of sampling.

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1D	MW1S	MW3	MW4	MW5
	Cli	ient sampli	ing date / time	27-NOV-2013 09:35	27-NOV-2013 09:45	27-NOV-2013 09:25	27-NOV-2013 07:55	27-NOV-2013 09:15
Compound	CAS Number	LOR	Unit	EW1303404-001	EW1303404-002	EW1303404-003	EW1303404-004	EW1303404-005
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	328	442	494	314	219
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	298	163	216	276	158
Total Alkalinity as CaCO3		1	mg/L	298	163	216	276	158
EK055G: Ammonia as N by Discrete An	alyser							
Ammonia as N	7664-41-7	0.01	mg/L	4.13	0.21	0.25	0.37	5.88
EK057G: Nitrite as N by Discrete Analy	ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	/ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.03	<0.01	0.02	0.03	0.14
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.03	<0.01	0.02	0.03	0.14
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	4.4	4.6	0.7	1.7	9.4
EK062G: Total Nitrogen as N (TKN + NC	() () by Discrete An	alyser						
[^] Total Nitrogen as N		0.1	mg/L	4.4	4.6	0.7	1.7	9.5
EK067G: Total Phosphorus as P by Dise	crete Analyser							
Total Phosphorus as P		0.01	mg/L	0.44	0.86	0.33	2.17	1.83
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.5	6.8	7.4	7.1	7.0
Electrical Conductivity (Non Compensated)		1	µS/cm	624	548	760	632	395
Dissolved Oxygen		0.01	mg/L	2.50	0.72	1.54	2.32	2.13
Depth		0.01	m	3.64	3.74	4.10	4.66	3.99

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW6D	MW6S	MW7D	MW7S	MW9
	Cli	ent sampli	ing date / time	27-NOV-2013 08:15	27-NOV-2013 08:25	27-NOV-2013 08:40	27-NOV-2013 08:50	27-NOV-2013 10:15
Compound	CAS Number	LOR	Unit	EW1303404-006	EW1303404-007	EW1303404-008	EW1303404-009	EW1303404-010
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	475	364	307	282	7530
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	358	273	265	153	130
Total Alkalinity as CaCO3		1	mg/L	358	273	265	153	130
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	10.4	0.04	2.09	1.33	0.32
EK057G: Nitrite as N by Discrete Anal	lyser							
Nitrite as N		0.01	mg/L	0.04	0.10	<0.10	<0.10	<0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.62	<0.10	<0.10	<0.01
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Ana	yser						
Nitrite + Nitrate as N		0.01	mg/L	0.06	0.72	<0.10	<0.10	<0.01
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	10.8	0.6	2.9	2.0	1.6
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alvser						
[^] Total Nitrogen as N		0.1	mg/L	10.9	1.3	2.9	2.0	1.6
EK067G: Total Phosphorus as P by Di	iscrete Analvser							
Total Phosphorus as P		0.01	mg/L	9.07	0.22	8.46	0.67	0.09
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.1	7.4	7.4	7.8	6.4
Electrical Conductivity (Non Compensated)		1	µS/cm	851	679	547	518	10200
Dissolved Oxygen		0.01	mg/L	1.88	2.13	2.20	2.03	2.14
Depth		0.01	m	5.04	4.77	4.80	4.68	1.83

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW10	MW11	ML-1	ML-2	ML-3
	Clie	ent sampli	ng date / time	27-NOV-2013 10:00	27-NOV-2013 10:35	27-NOV-2013 09:50	27-NOV-2013 10:50	27-NOV-2013 09:55
Compound	CAS Number	LOR	Unit	EW1303404-011	EW1303404-012	EW1303404-013	EW1303404-014	EW1303404-015
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	10800	2900		9920	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1		<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1		<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	10	32		127	
Total Alkalinity as CaCO3		1	mg/L	10	32		127	
EK055G: Ammonia as N by Discrete Ana	alyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.30	0.01		1.00	
EK057G: Nitrite as N by Discrete Analys	ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01		0.06	
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	<0.01		0.06	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	yser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	<0.01		0.12	
EK061G: Total Kjeldahl Nitrogen By Disc	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	1.2		2.2	
EK062G: Total Nitrogen as N (TKN + NO	x) by Discret <u>e An</u>	alyser						
Total Nitrogen as N		0.1	mg/L	0.3	1.2		2.3	
EK067G: Total Phosphorus as P by Disc	rete Analyse <u>r</u>							
Total Phosphorus as P		0.01	mg/L	<0.01	0.07		0.01	
EN67 PK: Field Tests								
рН		0.1	pH Unit	5.3	570		7.2	
Electrical Conductivity (Non		1	µS/cm	14400	4730		13600	
Compensated)								
Dissolved Oxygen		0.01	mg/L	2.38	2.25		11.1	
Depth		0.01	m	2.20	2.28			
Field Observations		0.01				0		0

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	ML-4	ML-5	 	
	Cl	ient sampli	ng date / time	27-NOV-2013 09:57	27-NOV-2013 10:20	 	
Compound	CAS Number	LOR	Unit	EW1303404-016	EW1303404-017	 	
EA015: Total Dissolved Solids							
Total Dissolved Solids @180°C		1	mg/L		2510	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L		<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L		<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L		112	 	
Total Alkalinity as CaCO3		1	mg/L		112	 	
EK055G: Ammonia as N by Discrete Ana	lyser						
Ammonia as N	7664-41-7	0.01	mg/L		0.52	 	
EK057G: Nitrite as N by Discrete Analys	er						
Nitrite as N		0.01	mg/L		0.02	 	
EK058G: Nitrate as N by Discrete Analys	ser						
Nitrate as N	14797-55-8	0.01	mg/L		0.05	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L		0.07	 	
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L		0.6	 	
EK062G: Total Nitrogen as N (TKN + NO)	() by Discrete Ar	nalyser					
^ Total Nitrogen as N		0.1	mg/L		0.7	 	
EK067G: Total Phosphorus as P by Disc	rete Analvser						
Total Phosphorus as P		0.01	mg/L		0.01	 	
EN67 PK: Field Tests							
рН		0.1	pH Unit		7.2	 	
Electrical Conductivity (Non		1	µS/cm		4260	 	
Compensated)							
Dissolved Oxygen		0.01	mg/L		6.65	 	
Field Observations		0.01		0		 	

		Dees	
Work Order	EW1400217	Page	: 1 of 6
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541
			AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
Telephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
Facsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Quarterly	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 07-FEB-2014
Sampler	: Craig Wilson	Issue Date	: 17-FEB-2014
Site	:		
		No. of samples received	: 17
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

~	NATA Accredited Laboratory 825	Signatories This document has been electronically	signed by the authorized signatories in	ndicated below. Electronic signing has been
NATA	Accredited for compliance with	carried out in compliance with procedures sp	ecified in 21 CFR Part 11.	
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
		Ankit Joshi	Inorganic Chemist Environmental Services Representative	Sydney Inorganics
WORLD RECOGNISED		Glenn Davies Hoa Nguyen	Senior Inorganic Chemist	Laboratory - Wollongong Sydney Inorganics

Address 99 Kenny Street, Wollongong 2500

Environmental Division NSW/904/th Doasty Races 4009 986 1029 Partis New AL25 Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- EK067G: LOR raised for Total P on sample ID(MW10) due to sample matrix.
- It has been noted that Nitriteis greater than NOx for sample ID (MW7S), however this difference is within the limits of experimental variation.
- Sites ML1, ML-3 & ML-4 No access at time of sampling. Site - MW1S - Dry at time of sampling.

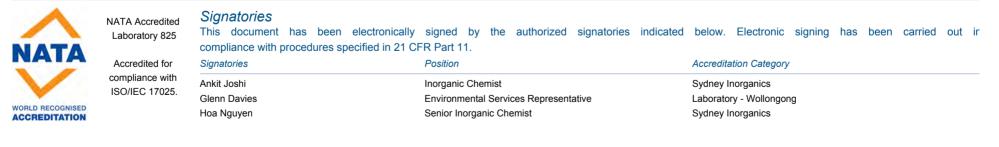
Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW1D	MW1S	MW3	MW4	MW5
	Cli	ient sampli	ing date / time	07-FEB-2014 10:05	07-FEB-2014 10:15	07-FEB-2014 09:50	07-FEB-2014 08:35	07-FEB-2014 09:40
Compound	CAS Number	LOR	Unit	EW1400217-001	EW1400217-002	EW1400217-003	EW1400217-004	EW1400217-005
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	309		443	351	264
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1		<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1		<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	254		194	284	155
Total Alkalinity as CaCO3		1	mg/L	254		194	284	155
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	2.88		0.11	0.22	0.64
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N		0.01	mg/L	<0.01		<0.01	<0.01	0.11
EK058G: Nitrate as N by Discrete An	alvser							
Nitrate as N	14797-55-8	0.01	mg/L	0.11		0.21	0.02	0.61
EK059G: Nitrite plus Nitrate as N (NC	0x) by Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	0.11		0.21	0.02	0.72
EK061G: Total Kjeldahl Nitrogen By [Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	3.1		0.4	0.7	2.2
EK062G: Total Nitrogen as N (TKN + I	NOx) by Discrete An	alvser						
Total Nitrogen as N		0.1	mg/L	3.2		0.6	0.7	2.9
EK067G: Total Phosphorus as P by D)iscrete Analyser							1
Total Phosphorus as P		0.01	mg/L	0.14		0.27	1.63	1.07
EN67 PK: Field Tests								
pH		0.1	pH Unit	7.5		7.4	7.0	7.3
Electrical Conductivity (Non		1	µS/cm	590		787	683	425
Compensated)								
Dissolved Oxygen		0.01	mg/L	1.82		2.36	1.97	2.09
Depth		0.01	m	3.90		4.33	4.87	4.19
Field Observations		0.01			DRY			
	i de la companya de la		1		A CONTRACTOR OF	the second s	the second s	A CONTRACT OF A CONTRACT.

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW6D	MW6S	MW7D	MW7S	MW9
	Cli	ent sampli	ing date / time	07-FEB-2014 09:00	07-FEB-2014 08:50	07-FEB-2014 09:15	07-FEB-2014 09:25	07-FEB-2014 10:40
Compound	CAS Number	LOR	Unit	EW1400217-006	EW1400217-007	EW1400217-008	EW1400217-009	EW1400217-010
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	438	356	280	312	13100
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	325	248	208	143	86
Total Alkalinity as CaCO3		1	mg/L	325	248	208	143	86
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	9.08	0.04	1.97	1.64	0.24
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N		0.01	mg/L	<0.01	0.04	<0.01	0.02	<0.01
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.05	0.05	0.02	<0.01	0.01
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.05	0.09	0.02	<0.01	0.01
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	9.4	0.6	2.2	1.8	1.1
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
[^] Total Nitrogen as N		0.1	mg/L	9.4	0.7	2.2	1.8	1.1
EK067G: Total Phosphorus as P by Di	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	3.86	0.75	2.55	0.22	0.06
EN67 PK: Field Tests								
рН		0.1	pH Unit	7.1	7.2	7.5	7.8	6.2
Electrical Conductivity (Non Compensated)		1	µS/cm	850	662	476	580	18900
Dissolved Oxygen		0.01	mg/L	2.75	2.33	1.94	1.97	1.90
Depth		0.01	m	5.20	4.94	4.98	4.84	1.94

Page	5 of 6
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MW10	MW11	ML-1	ML-2	ML-3
	CI	ient sampli	ing date / time	07-FEB-2014 10:30	07-FEB-2014 11:10	07-FEB-2014 10:55	07-FEB-2014 11:25	07-FEB-2014 11:00
Compound	CAS Number	LOR	Unit	EW1400217-011	EW1400217-012	EW1400217-013	EW1400217-014	EW1400217-015
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		1	mg/L	19400	5480		28800	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1		<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1		<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	26		115	
Total Alkalinity as CaCO3		1	mg/L	4	26		115	
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.09	<0.01		0.44	
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N		0.01	mg/L	<0.01	<0.01		0.05	
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.16	<0.01		0.01	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.16	<0.01		0.06	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.2	5.0		1.0	
EK062G: Total Nitrogen as N (TKN + N	NOx) by Discrete Ar	nalyser						
Total Nitrogen as N		0.1	mg/L	0.2	5.0		1.1	
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	<0.02	0.47		0.12	
EN67 PK: Field Tests								
рН		0.1	pH Unit	5.1	5.6		6.9	
Electrical Conductivity (Non		1	µS/cm	28200	8280		40400	
Compensated)								
Dissolved Oxygen		0.01	mg/L	3.89	2.15		5.22	
Depth		0.01	m	2.33	2.39			
Field Observations		0.01				NO ACCESS		NO ACCESS

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	ML-4	ML-5	 	
	Ci	lient sampl	ing date / time	07-FEB-2014 11:05	07-FEB-2014 10:50	 	
Compound	CAS Number	LOR	Unit	EW1400217-016	EW1400217-017	 	
EA015: Total Dissolved Solids							
Total Dissolved Solids @180°C		1	mg/L		24400	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L		<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L		<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L		138	 	
Total Alkalinity as CaCO3		1	mg/L		138	 	
EK055G: Ammonia as N by Discrete Ana	alyser						
Ammonia as N	7664-41-7	0.01	mg/L		2.60	 	
EK057G: Nitrite as N by Discrete Analys	ser						
Nitrite as N		0.01	mg/L		0.15	 	
EK058G: Nitrate as N by Discrete Analy	ser						
Nitrate as N	14797-55-8	0.01	mg/L		0.02	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L		0.17	 	
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L		2.7	 	
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete A	nalyser					
[^] Total Nitrogen as N		0.1	mg/L		2.9	 	
EK067G: Total Phosphorus as P by Disc	rete Analyser						
Total Phosphorus as P		0.01	mg/L		0.03	 	
EN67 PK: Field Tests							
pH		0.1	pH Unit		6.9	 	
Electrical Conductivity (Non Compensated)		1	µS/cm		34500	 	
Dissolved Oxygen		0.01	mg/L		5.52	 	
Field Observations		0.01		NO ACCESS		 	


QUALITY CONTROL REPORT

Work Order	: EW1400217	Page	: 1 of 7
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541 AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
Telephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
Facsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Quarterly	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 07-FEB-2014
Sampler	: Craig Wilson	Issue Date	: 17-FEB-2014
Order number	:		
		No. of samples received	: 17
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 99 Kenny Street, Wollongong 2500 Environmental Division NSW উঠি৫// সেইজিকের প্রিতন্ত্র প্রিতন্ত্র প্রিতন্ত্র প্রিতন্ত্র প্রিতন্ত্র প্রিতন্তর প্রিত

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Page	: 3 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER					i	Laboratory	Duplicate (DUP) Report		
aboratory sample ID		Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A015: Total Dissol	ved Solids (QC Lot: 32	89224)							
ES1402758-010	Anonymous	EA015: Total Dissolved Solids @180°C		1	mg/L	174	154	12.2	0% - 20%
EW1400217-004	MW4	EA015: Total Dissolved Solids @180°C		1	mg/L	351	353	0.7	0% - 20%
D037P: Alkalinity b	by PC Titrator (QC Lot:	3285524)							
ES1402460-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	58	58	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	58	58	0.0	0% - 20%
ES1402588-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
	Ory sample ID Client sample ID : Total Dissolved Solids (QC Lot: 3 2758-010 Anonymous 10217-004 MW4 P: Alkalinity by PC Titrator (QC Lo 2460-003 Anonymous 2588-001 Anonymous 2588-001 Anonymous 2588-001 Anonymous 9: Alkalinity by PC Titrator (QC Lo 10217-011 MW10 0217-011 MW10 G: Ammonia as N by Discrete Analy 10217-004 MW4 10217-005 MW7D G: Nitrite as N by Discrete Analyse 2540-003 Anonymous 10217-006 MW6D G: Nitrite plus Nitrate as N (NOx) B 2430-001 Anonymous 10217-008 MW7D G: Nitrite plus Nitrate as N (NOx) B 10217-008 MW7D G: Total Kjeldahl Nitrogen By Discrete 24377-001 Anonymous 2585-001 Anonymous G: Total Kjeldahl Nitrogen By Discrete 240217-006 MW6D	ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	10	11	0.0	0% - 50%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	10	11	0.0	0% - 50%
D037P: Alkalinity b	by PC Titrator (QC Lot:	3285526)							
EW1400217-011	MW10	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	3	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	4	3	0.0	No Limit
K055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 3287292)							
EW1400217-004	MW4	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.22	0.26	15.4	0% - 20%
EW1400217-008	MW7D	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.97	1.97	0.0	0% - 20%
K057G: Nitrite as	N by Discrete Analyser	(QC Lot: 3285402)							
ES1402540-003		EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EW1400217-006	MW6D	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
K059G: Nitrite plu	IS Nitrate as N (NOx) by	/ Discrete Analyser (QC Lot: 3287290)							
ES1402430-001		EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.04	39.5	No Limit
ES1402536-003	-	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.63	0.63	0.0	0% - 20%
K059G: Nitrite plu	IS Nitrate as N (NOx) by	/ Discrete Analyser (QC Lot: 3287293)					1		
EW1400217-008		EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit
K061G: Total Kielo	lahl Nitrogen By Discre				5				
S1402477-001		EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.0	2.0	0.0	0% - 20%
ES1402585-001	-	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.4	1.3	0.0	No Limit
	-			0.1			1.0	0.0	
EW1400217-006				0.1	ma/l	9.4	9.3	0.0	0% - 20%
ME1400217-006		EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	9.3	0.0	No Limit
	-	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	SU.1	0.0	

Page	: 4 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Sub-Matrix: WATER			[Laboratory Duplicate (DUP) Report							
Laboratory sample ID	aboratory sample ID Client sample ID Method: Compound CAS Nur		CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EK067G: Total Phos	phorus as P by Discre	te Analyser (QC Lot: 3286236) - continued									
ES1402477-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	7.64	7.56	1.1	0% - 20%		
ES1402585-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	1.13	1.11	1.6	0% - 20%		
EK067G: Total Phos	phorus as P by Discre	te Analyser (QC Lot: 3286238)									
EW1400217-006	MW6D	EK067G: Total Phosphorus as P		0.01	mg/L	3.86	3.89	0.7	0% - 20%		
ME1400178-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.06	0.05	21.1	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids (QCLot: 3289224)								
EA015: Total Dissolved Solids @180°C		1	mg/L	<1	293 mg/L	90.4	88	126
ED037P: Alkalinity by PC Titrator (QCLot: 3285524)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	90.9	81	111
ED037P: Alkalinity by PC Titrator (QCLot: 3285526)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	89.8	81	111
EK055G: Ammonia as N by Discrete Analyser (QCLot: 3	3287292)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1.00 mg/L	100	86	112
EK057G: Nitrite as N by Discrete Analyser (QCLot: 328	5402)							
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	98.2	83	119
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 328	37290)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	102	87	119
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 328	37293)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	102	87	119
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 3286235)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	89.6	66	126
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 3286237)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	87.1	66	126
EK067G: Total Phosphorus as P by Discrete Analyser(QCLot: 3286236)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	97.6	67	124
EK067G: Total Phosphorus as P by Discrete Analyser(QCLot: 3286238)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	92.8	67	124

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Matrix: WATER					Matrix Spike (MS) Report					
		Spike	SpikeRecovery(%)	Recovery L	_imits (%)						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 3287292)										
EW1400217-008	MW7D	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	93.1	70	130				
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 3285402)										

Page	: 6 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number MS Concentration Low High Method: Compound EK057G: Nitrite as N by Discrete Analyser (QCLot: 3285402) - continued ES1402540-003 Anonymous EK057G: Nitrite as N 0.5 mg/L 97.4 70 130 ----EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3287290) ES1402430-001 Anonymous 130 EK059G: Nitrite + Nitrate as N 0.5 mg/L 71.8 70 ----EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3287293) MW7D EW1400217-008 0.5 mg/L 101 70 130 EK059G: Nitrite + Nitrate as N ----EK061G: Total Kieldahl Nitrogen By Discrete Analyser (QCLot: 3286235) ES1402477-002 Anonymous 10 mg/L 89.5 70 130 EK061G: Total Kjeldahl Nitrogen as N ----EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 3286237) EW1400217-007 MW6S 87.1 70 130 EK061G: Total Kjeldahl Nitrogen as N ----5 mg/L EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3286236) ES1402477-002 Anonymous EK067G: Total Phosphorus as P ----1 mg/L 101 70 130 EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 3286238) EW1400217-007 MW6S 1 mg/L 106 70 130 EK067G: Total Phosphorus as P ----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (M	IS) and Matrix Sp	ike Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPL	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 3285402)								
ES1402540-003	Anonymous	EK057G: Nitrite as N	EK057G: Nitrite as N		97.4		70	130		
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCL	ot: 3286235)								
ES1402477-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	89.5		70	130		
EK067G: Total Pho	sphorus as P by Discrete Analyser(QCL	ot: 3286236)								
ES1402477-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	101		70	130		
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCL	ot: 3286237)								
EW1400217-007	MW6S	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	87.1		70	130		
EK067G: Total Pho	sphorus as P by Discrete Analyser(QCL	ot: 3286238)								
EW1400217-007	MW6S	EK067G: Total Phosphorus as P		1 mg/L	106		70	130		
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyse	er (QCLot: 3287290)								
ES1402430-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	71.8		70	130		
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 3287)	292)								
EW1400217-008	MW7D	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	93.1		70	130		

Page	: 7 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Sub-Matrix: WATER	Sub-Matrix: WATER			Matrix Spike (N	IS) and Matrix Spi	ke Duplicate	(MSD) Repo	rt		
			Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK059G: Nitrite plu	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 3287293)									
EW1400217-008	MW7D	EK059G: Nitrite + Nitrate as N		0.5 mg/L	101		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EW1400217	Page	: 1 of 7
Client		Laboratory	: Environmental Division NSW South Coast
Contact	: MR PAUL CZULOWSKI	Contact	: Glenn Davies
Address	: 11 MANNING STREET	Address	: 99 Kenny Street, Wollongong 2500
	KIAMA NSW, AUSTRALIA 2533		Unit 4 / 13 Geary Place, PO Box 3105, North Nowra 2541
			AUSTRALIA
E-mail	: paulc@kiama.nsw.gov.au	E-mail	: glenn.davies@alsglobal.com
Telephone	: +61 02 4232 0444	Telephone	: 02 4225 3125
Facsimile	: +61 02 4232 0555	Facsimile	: 02 4225 3128
Project	: Gerroa Landfill Quarterly	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 07-FEB-2014
Sampler	: Craig Wilson	Issue Date	: 17-FEB-2014
Order number	:		
		No. of samples received	: 17
Quote number	: Gerroa Landfill WL/083/11	No. of samples analysed	: 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 99 Kenny Street, Wollongong 2500

Environmental Division NSW Stouth Coasy Rages Pop 36 125 Parts New ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Matrix: WATER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

							breach ; 🗸 = within	i noiding tin
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural (EA015)								
MW1D,	MW3,	07-FEB-2014		14-FEB-2014		11-FEB-2014	14-FEB-2014	✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
MW1D,	MW3,	07-FEB-2014		21-FEB-2014		07-FEB-2014	21-FEB-2014	 ✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MW1D,	MW3,	07-FEB-2014		07-MAR-2014		10-FEB-2014	07-MAR-2014	 ✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								

Page	: 3 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Within	n holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyse	r in the second							
Clear Plastic Bottle - Natural (EK057G)								
MW1D,	MW3,	07-FEB-2014		09-FEB-2014		07-FEB-2014	09-FEB-2014	✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G								
MW1D,	MW3,	07-FEB-2014		07-MAR-2014		10-FEB-2014	07-MAR-2014	✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								
EK061G: Total Kjeldahl Nitrogen By Discre	ete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G	6)							
MW1D,	MW3,	07-FEB-2014	10-FEB-2014	07-MAR-2014	1	10-FEB-2014	07-MAR-2014	✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								
EK067G: Total Phosphorus as P by Discre	te Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G								
MW1D,	MW3,	07-FEB-2014	10-FEB-2014	07-MAR-2014	1	10-FEB-2014	07-MAR-2014	✓
MW4,	MW5,							
MW6D,	MW6S,							
MW7D,	MW7S,							
MW9,	MW10,							
MW11,	ML-2,							
ML-5								

Page	: 4 of 7
Work Order	: EW1400217
Client	: KIAMA COUNCIL
Project	: Gerroa Landfill Quarterly

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	n noiaing tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EN67 PK: Field Tests								
Field Test Dummy Bottle (EN67 PK)								
MW1D,	MW1S,	07-FEB-2014				07-FEB-2014	07-FEB-2014	 ✓
MW3,	MW4,							
MW5,	MW6D,							
MW6S,	MW7D,							
MW7S,	MW9,							
MW10,	MW11,							
ML-1,	ML-2,							
ML-3,	ML-4,							
ML-5								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Aatrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	3	24	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
mmonia as N by Discrete analyser	EK055G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	27	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
litrite as N by Discrete Analyser	EK057G	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	35	11.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	4	36	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
Ikalinity by PC Titrator	ED037-P	2	24	8.3	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
mmonia as N by Discrete analyser	EK055G	1	20	5.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	27	7.4	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite as N by Discrete Analyser	EK057G	1	18	5.6	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	35	17.1	15.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	6	36	16.7	15.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
mmonia as N by Discrete analyser	EK055G	1	20	5.0	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	27	7.4	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite as N by Discrete Analyser	EK057G	1	18	5.6	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Dissolved Solids	EA015	1	20	5.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	35	5.7	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	36	5.6	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)							
mmonia as N by Discrete analyser	EK055G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	27	7.4	5.0	 ✓ 	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
itrite as N by Discrete Analyser	EK057G	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	35	5.7	5.0		NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Phosphorus as P By Discrete Analyser	EK067G	2	36	5.6	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids	EA015	WATER	In-House, APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	APHA 21st ed., 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Field Tests - Port Kembla	EN67 PK	WATER	Field determinations as per methods described in APHA. The analysis is performed in the field by ALS samplers. ALS NATA accreditation apply for this service.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

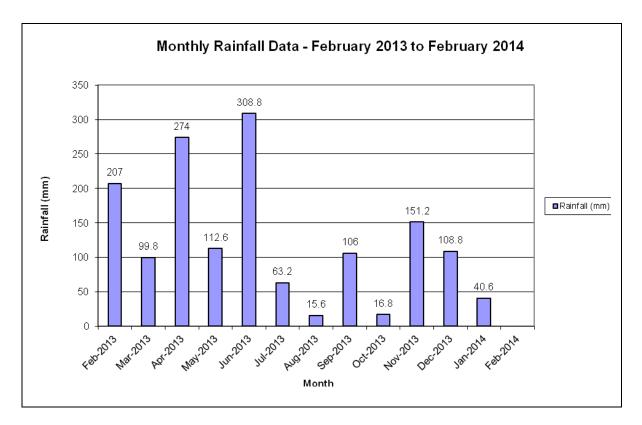
This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.


25	ALS Laboratory: please tick 🔿	 Newparkler 5 Rosegum Rd. Watabook NSW 2004 Hin DJ. A905 5433 — samples newcastraigte service with 	Ro. Warabrook I s newcastraidae	D Townsylles	Townsylle: 14 If Desira Cr Bong OLD 4819 Townsylle: 14 If Desira Cr Bong OLD 4819 of Alve MD	2016	Adeiaida: 511 a	Traval does = 00 C samples meleurine galactive c T Adeiaida 211 Sama Rij Polo ava SA 5003 Ph C0 5053 ABG 5 adeiaide@aisimrc.com	 In of 0202 regile sumples partingaaanvarm Launesston: 27 Winington St Lauraeston TAS 7250 In C2 6211 (218) E Taunceston@aterovico.com 	D.
CLIENT:	Kiama Municipal Council		TURNAROL	TURNAROUND REQUIREMENTS :	Standard TAT (List due date	due date):			FOR LABORATORY USE ONLY (Circle)	(0)
OFFICE: F	PO Box 75 Klama NSW 2533		(Standard TAT	(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)			(List due date);		Custody Seal Intect?	Yes No
PROJECT: (Gerroa Landfill Quarterly		ALS QUOTE NO .:	ENO.: W	WL/083/11		-	COC SEQUENCE NUMBER (Circle)	rcle) Free Ice / trozen Ice bricks present upon receipt?	Yes No
ORDER NUMBER:							COC:	1 2 3 4 5	6 7 Random Sample Temperature on Receipt	ñ
PROJECT MANAGER: F	Paul Czulowski	CONTACT P	CONTACT PH: 4232 0418	8			QF	1 2 3 4 5	6 7 Other comment:	
SAMPLER:	Craig Wilson	SAMPLER N	SAMPLER MOBILE: 0408 251 560	8 251 560	RELINQUISHED BY:	ł	RECEN	RECEIVED BY:	RELINQUISHED BY: REI	RECEIVED BY:
COC emailed to ALS? (YES / NO)	YES / NO)	EDD FORM	EDD FORMAT (or default):		Craig C)	-	À		
Email Reports to (will def	Email Reports to (will default to PM if no other addresses are listed); paulc@kiama.nsw gov.au	re listed): paulc@kiama.nsw.gov	au		DATE/TIME		DATE/TIME	IME	DATE/TIME	DATE/TIME
Email Invoice to (will defa	Email Invoice to (will default to PM if no other addresses are listed):	e listed): paulo@klama.nsw.gov.au	v.au		2/2/19	1200	L	12/4 1250		
COMMENTS/SPECIAL H	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	SAL:								
ALS USE ONLY	SAM	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION	DRMATION	ANALYSI	S REQUIRED) including SUITES (NB. Suit d. specify Total (unfiltered bottle requi	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bothe required) or Dissolved (field fibrred bothe required)	Additional information
							P, TKN,		Comments dilutions, c analysis et	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	(refer to codes below)	VE TOTAL BOTTLES	TDS	NT- 8 (TN, NH3, TP, NO2, NO3)	Alkalinity		
	MW 1D	7/2/14 1000	ş	P-500mL, SP	N	•	`	•		Field Tests pH, EC. DO ma/L. Depth
	MW 1S	1015	\$	P-500mL, SP	2		`	`	Environmental Division	Field Tests pH, EC, DO mg/L, Depth
	MW 3	950	¥	P-500mL, SP	2	*	<	*	Work Order	Field Tests pH, EC, DO mg/L, Depth
	MW 4	525	\$	P-500mL, SP	2	*	1	•	EW/1400217	Field Tests pH, EC, DO mg/L, Depth
	MW 5	940	×	P-500mL, SP	N		1	`	CM	Field Tests pH, EC, DO mg/L, Depth
	MW 6D	900	\$	P-500mL, SP	2	~	•	·		Field Tests pH, EC, DO mg/L, Depth
	MW 6S	320	¥	P-500mL, SP	2	×	<	*		Field Tests pH, EC, DO mg/L, Depth
	MW 7D	715	W	P-500mL, SP	2	*	1	×	Telephone : 02 42253125	Field Tests pH, EC, DO mg/L, Depth
	MW 7S	526	¥	P-500mL, SP	2	*	1	*		Field Tests pH, EC, DO mg/L, Depth
	8 MW	1050	¥	P-500mL, SP	2	*		•		Field Tests pH, EC, DO mg/L, Depth
	MW10	1030	×	P-500mL, SP	2	*	<	`		Field Tests pH, EC, DO mg/L, Depth
	MW 11	4 1110	W	P-500mL, SP	2	~	•	*		Field Tests pH, EC, DO mg/L, Depth
				- 10-10	Tepleti					

CLIENT: Kia	Kiama Municipal Council	TURNAROUND REC	TURNAROU	ĩ	REMENTS : Standard TAT (List due date	date			FOR LABORATORY USE ONLY (Circle)	
	PO Box 75 Kiama NSW 2533		(Standard TAT e.g. Ultra Trace	(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	Non Standard or urgent TAT	urgent TAT (I	(List due date):		Custody Seal Intact? Free ice / frozen ice bricks present upon	185
10	Gerroa Landfill Quarterly		ALS QUOTE NO .:	NO.: WL	WL/083/11			COC SEQUENCE NUMBER (CI	•	niot: 105 VC
ORDER NUMBER:								· · ·	_	
PROJECT MANAGER: Pa	Paul Czulowski	CONTACT P	CONTACT PH: 4232 0418				OF	1 2 3 4 5 8	r Unite Comment	SECENCO RV.
- L	Craig Wilson	SAMPLER M	SAMPLER MOBILE: 0408 261 560		RELINQUISHED BY:	/	REC	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BT:
d to ALS? (ES / NO)	EDD FORMA	EDD FORMAT (or default):		Craig C.C.)	_	12		DATEITIME
mail Reports to (will defau	Email Reports to (will default to PM if no other addresses are listed): paulo@klama.nsw.gov.au	listed): paulc@kiama.nsw.gov	au		DATE/TIME:				DATEVIME	DO LO LIMO
mail Invoice to (will defau	Email Involce to (will default to PM if no other addresses are listed):	Isted) paulc@kiama.nsw.gov.au	au		7/2/14	1250	_	112/14 1250		
OMMENTS/SPECIAL HA	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	ι.								
ALS USE ONLY	SAMPL	SAMPLE DETAILS		CONTAINER INFORMATION	RMATION	ANAL	rSIS REQUIP ere Metals are re	ANALYSIS REQUIRED including SUITES (NB Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field thered bottle required)		Additional Information
		Control control								Comments on likely contaminant levels, dilutions, or samples requiring specific QC
LABID	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	VE TOTAL BOTTLES	TDS	NT- 8 (TN, NH3, TP, TKN, NO2, NO3)	Alkalinity	39	alysis etc.
		shill ince	2	P-500mL, SP	N	1		•		Field Tests pH, EC, DO mg/L
		2	*	P-500mL, SP	N		<			Field Tests pH, EC, DO mg/L
		COL	×	P-500mL, SP	2		<	•		EC, DO mg/L
		1102	٤	P-500mL, SP	2	~	<	•		EC, DO mg/L
		1050	\$	P-500mL, SP	2	<		•		Field Tests pH, EC, DO mg/L
	mero									
							1.0			
							-			
					TOTAL					

Appendix B

Rainfall – February 2013 to February 2014

Rainfall data obtained from Bureau of Meteorology 2013, Station ID: Toolijooa (Nyora), Number – 68175, approximately 3.3 km from Gerroa (<u>http://www.bom.gov.au/climate/data/index.shtml</u>)

Note: February 2014 rainfall data was not available during the time of reporting.

Appendix C: Ammonia Trigger Values

10% trigger level (mgL)	Date Sampled	MW1D	MW1S	MW3	MW4	MW5	MW6D	MW6S	MW7D	MW7S	MW9	MW10	MW11	ML-1	ML-2	ML-3	ML-4	ML-5
level (mg/L) r <t< th=""><th>20% trigger level (mg/L)</th><th>164.4</th><th>1.32</th><th>39.24</th><th>21.8</th><th>7.07</th><th>98.8</th><th>27.78</th><th>85.32</th><th>14.3</th><th>4.26</th><th>2.85</th><th>2.96</th><th></th><th></th><th></th><th></th><th></th></t<>	20% trigger level (mg/L)	164.4	1.32	39.24	21.8	7.07	98.8	27.78	85.32	14.3	4.26	2.85	2.96					
29/05/08 130 0.18 0.75 0.65 0.10 90 3.3 86 4.7 0.10 0.10 0.12 1.5 3.7 - 0.10 - 0.10 0.12 1.5 3.7 - 0.10 - 0.10 0.22 0.73 0.24 0.22 0.73 0.24 0.22 0.44 - 0.27 1.6 19/11/08 93 0.10 0.78 - 0.10 66 - 0.27 1.7 81 5.1 0.60 2.5 0.10 - 0.10 <1 - <1 - <1 1.6 19/05/09 61 0.25 0.73 0.79 0.03 45 2.6 62 8.3 0.05 0.08 4.7 0.1 <0.1 4.8 0.41 0.1 5.35 0.41 1.5 3.7 - <1 1.6 3.2 2.6 0.27 0.4 2.4 4.01 0.1 <0.1 <0.1														0.836	1.38	0.066	0.23	2.38
29/05/08 130 0.18 0.75 0.65 0.10 90 3.3 86 4.7 0.10 0.10 0.12 1.5 3.7 - 0.10 - 0.10 0.12 1.5 3.7 - 0.10 - 0.10 0.22 0.73 0.24 0.22 0.73 0.24 0.22 0.44 - 0.27 1.6 19/11/08 93 0.10 0.78 - 0.10 66 - 0.27 1.7 81 5.1 0.60 2.5 0.10 - 0.10 <1 - <1 - <1 1.6 19/05/09 61 0.25 0.73 0.79 0.03 45 2.6 62 8.3 0.05 0.08 4.7 0.1 <0.1 4.8 0.41 0.1 5.35 0.41 1.5 3.7 - <1 1.6 3.2 2.6 0.27 0.4 2.4 4.01 0.1 <0.1 <0.1	22/02/00	120	0.16		0.00	0.1	01	2.2	110	2.2	0.24	0.2	0.00	0.21	0.00		1.	
25/08/08 140 0.18 0.77 0.65 0.10 110 3.2 86 5.9 0.22 0.73 0.24 0.22 0.44 - 0.27 19/11/08 93 0.10 0.78 - 0.10 69 2.5 65 3.5 0.10 - 0.10 <1 <1 - <1 - <1 - <1 - <1 - <1 - <1 - <1 - <1 .6 <1 - <1 - <1 .6 <1 - <1 .6 <1 - <1 .6 <1 .7 <1 <1 .6 <1 .6 <1 .0 .0 .6 .0 .0 .6 .0 .0 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																		-
19/11/08 93 0.10 0.78 - 0.10 69 2.5 65 3.5 0.10 - 0.10 <1																-		-
18/02/09 82 0.02 0.60 - 0.02 72 1.7 81 5.1 0.62 0.25 0.10 19/05/09 61 0.25 0.73 0.79 0.03 45 2.6 62 8.3 0.05 0.08 4.7 27/08/09 95 0.42 0.89 0.54 0.02 76 3.0 85 8.4 0.06 0.21 4.8 27/11/09 58 1.3 0.8 0.5 0.1 73 1.8 43 4.1 0.2 0.4 2.4 05/01 22.6 0.27 0.62 0.38 0.08 16.4 0.83 21.9 0.49 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </th <th></th> <th>-</th> <th></th> <th>1.0</th>																-		1.0
19/05/09 61 0.25 0.73 0.79 0.03 45 2.6 62 8.3 0.05 0.08 4.7 27/08/09 95 0.42 0.89 0.54 0.02 76 3.0 85 8.4 0.06 0.21 4.8 27/11/09 58 1.3 0.8 0.5 0.1 73 1.8 43 4.1 0.2 0.4 2.4 26/2/10 37 0.04 0.31 0.24 0.02 36.5 0.6 37.8 3.03 <0.1					1									<1		-	<1	
27/08/09 95 0.42 0.89 0.54 0.02 76 3.0 85 8.4 0.06 0.21 4.8 27/11/09 58 1.3 0.8 0.5 0.1 73 1.8 43 4.1 0.2 0.4 2.4 26/2/10 37 0.04 0.31 0.24 0.02 36.5 0.6 37.8 3.03 <0.1 <0.1 5.35 21/05/10 22.6 0.27 0.62 0.38 0.08 16.4 0.83 21.9 0.49 <0.1 <0.1 <0.1 30/11/10 25.7 0.05 0.66 0.22 0.04 21.8 1.73 21.7 2.56 0.84 <0.1 <0.1 31/1/10 2.57 0.05 0.66 0.22 0.04 21.8 1.73 21.7 2.56 0.84 <0.1 <0.1 24/S/11 2.56 0.04 0.14 1.16 0.03 3.24 0.19 4.38 0.16 <0.01 D.13 No 311/11 2.15 0.02 0.0																		
27/11/09 58 1.3 0.8 0.5 0.1 73 1.8 43 4.1 0.2 0.4 2.4 26/2/10 37 0.04 0.31 0.24 0.02 36.5 0.6 37.8 3.03 <0.1 <0.1 5.35 21/05/10 22.6 0.27 0.62 0.38 0.08 16.4 0.83 21.9 0.49 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																		
26/2/10 37 0.04 0.31 0.24 0.02 36.5 0.6 37.8 3.03 <0.1																		
21/05/10 22.6 0.27 0.62 0.38 0.08 16.4 0.83 21.9 0.49 <0.1																		
17/8/10 32.4 <0.01																		
30/11/10 25.7 0.05 0.66 0.22 0.04 21.8 1.73 21.7 2.56 0.84 <0.1																		
23/2/11 6.67 0.05 0.26 0.91 0.03 8.9 0.48 10.2 1.34 0.06 <0.1																		
23/2/11 6.67 6.67 6.03 6.26 6.91 6.05 6.9 0.48 10.2 1.34 0.06 <0.11																Cleary	Cleary	
24/5/11 2.56 0.04 0.14 1.16 0.03 1.38 0.23 7.99 1.3 0.05 0.03 0.06 Bros 2.39 1and - No 24/8/11 0.12 0.06 0.42 0.58 0.03 3.24 0.19 4.38 0.16 <0.01 Dry 0.03 1and - No No access 1.69 No access 1.69 No access 1.69 No access 3.07 3/1/11 2.15 0.02 0.29 0.64 0.08 2.25 0.4 4.17 1.93 1 0.02 0.03 No access 1.69 No access 3.07 3/15/2012 0.07 0.05 0.04 0.18 0.03 7.62 0.12 2.61 2.25 0.03 0.02 0.03 1.77 1.73														2		2	2	
24/8/11 0.12 0.06 0.42 0.58 0.03 3.24 0.19 4.38 0.16 <0.01																		
3/11/11 2.15 0.02 0.29 0.64 0.08 2.25 0.4 4.17 1.93 1 0.02 0.03 No 1.03 access 0.85 1/2/12 3.16 <0.01 0.23 0.68 0.02 10.8 0.25 1.98 2.03 <0.1 <0.1 0.01 access 1.7 3.07 31/5/2012 0.07 0.05 0.04 0.18 0.03 7.62 0.12 2.61 2.25 0.03 0.02 0.03 access 1.7 1.73 <th></th> <th><0.01</th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											<0.01	,						
31/5/2012 0.07 0.05 0.04 0.18 0.03 7.62 0.12 2.61 2.25 0.03 0.02 0.03 10/8/2012 0.09 <0.01 0.35 0.1 0.05 7.06 0.08 1.94 2.34 0.04 0.02 0.05 21/11/2012 0.17 - 0.44 0.15 0.23 7.17 0.2 1.67 2.74 0.23 <0.1 <0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											1							
10/8/2012 0.09 <0.01														access				
21/1/2012 0.17 - 0.44 0.15 0.23 7.17 0.2 1.67 2.74 0.23 <0.1																		
18/2/2013 0.26 0.13 7.78 0.44 0.55 12.8 0.91 1.93 1.2 1.08 0.58 0.42 31/5/2013 0.27 0.34 0.93 1.86 0.45 14.6 0.04 2.82 1.91 <0.01 0.05 0.07 0.75 30/8/2013 2.88 0.28 0.14 <0.01 0.06 11.3 0.29 2.43 0.91 0.02 0.06 0.02			<0.01															
31/5/2013 0.27 0.34 0.93 1.86 0.45 14.6 0.04 2.82 1.91 <0.01																		
30/8/2013 2.88 0.28 0.14 <0.01 0.06 11.3 0.29 2.43 0.91 0.02 0.06 0.02 3.19 2.6																		
27/11/2013 4.13 0.21 0.25 0.37 5.88 10.4 0.04 2.09 1.33 0.32 0.3 0.01 1	30/8/2013														3.19			
	27/11/2013	4.13	0.21	0.25	0.37	5.88	10.4	0.04	2.09	1.33	0.32	0.3	0.01		1			0.52

Ammonia levels and 20% trigger factor for Groundwater and 10% trigger factor for Surface water at Gerroa Landfill

Legend: 2.39 = 10% or 20% trigger level exceeded

LAST PAGE OF REPORT

Thank you for the opportunity to work with your organisation.

Your feedback is welcomed regarding Earth2Water Pty Ltd professional services. Dino Parisotto (dino@earth2water.com.au)

