

CERTIFICATE OF ANALYSIS

Work Order : EW2203826

: KIAMA COUNCIL

Contact : MS JULIE MILEVSKI

Address : 11 MANNING STREET

KIAMA NSW. AUSTRALIA 2533

Telephone : +61 02 4232 0557 Project Gerroa Landfill

Order number : PO14414

C-O-C number

Client

Sampler · Robert DaLio Site Gerroa Landfill : WO/010/2021 Quote number

No. of samples received : 21 No. of samples analysed : 21 Page : 1 of 11

> Laboratory : Environmental Division NSW South Coast

Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr. North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125 **Date Samples Received** : 22-Aug-2022 16:10 **Date Analysis Commenced** : 22-Aug-2022

Issue Date : 30-Aug-2022 14:38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Robert DaLio Sampler Laboratory - Wollongong, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Page : 2 of 11 Work Order : EW2203826

Client : KIAMA COUNCIL
Project · Gerroa Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK057G:LOR raised for Nitrite due to sample matrix.
- ED045G: LOR raised for Chloride due to sample matrix.
- ED045G: LOR raised for Chloride due to sample matrix.
- EK059G: LOR raised for NOx due to sample matrix.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- It has been noted that NH is greater than TKN for sample 6, however this difference is within the limits of experimental variation.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- ORP (Oxidation Reduction Potential) performed by ALS Wollongong via in-house method EA075FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via High Flow Method.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

 Page
 : 3 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1D	MW1S	MW3	MW4	MW5
		Sampli	ing date / time	22-Aug-2022 11:10	22-Aug-2022 11:30	22-Aug-2022 10:50	22-Aug-2022 08:45	22-Aug-2022 10:35
Compound	CAS Number	LOR	Unit	EW2203826-001	EW2203826-002	EW2203826-003	EW2203826-004	EW2203826-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
pH		0.1	pH Unit	7.4	6.2	7.5	6.7	7.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	406	117	409	389	337
EA015: Total Dissolved Solids dried a	at 180 + 5 °C							
Total Dissolved Solids @180°C		10	mg/L	254	108	261	219	198
EA075FD: Field Redox Potential								
Redox Potential		0.1	mV	-175	-57.8	-198	-80.8	-132
ED037P: Alkalinity by PC Titrator						111		1.2
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	202	26	196	163	150
Total Alkalinity as CaCO3		1	mg/L	202	26	196	163	150
ED041G: Sulfate (Turbidimetric) as S	Ω4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<10	2	5	<1
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	9	<10	16	18	7
ED093F: Dissolved Major Cations	1,000,000							
Calcium	7440-70-2	1	mg/L	50	6	49	59	48
Magnesium	7439-95-4	1	mg/L	13	3	11	3	4
Sodium	7440-23-5	1	mg/L	7	5	17	6	12
Potassium	7440-09-7	1	mg/L	4	<1	2	3	2
EG020F: Dissolved Metals by ICP-MS								•
Manganese	7439-96-5	0.001	mg/L	0.012	0.018	0.053	0.050	0.002
Iron	7439-89-6	0.05	mg/L	1.54	11.8	3.65	1.86	0.09
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.2	0.2	0.1
EK055G: Ammonia as N by Discrete								
Ammonia as N	7664-41-7	0.01	mg/L	0.65	0.04	0.15	0.06	0.03
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.10	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete An			3. =				2.2.	
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.10	0.02	<0.01	<0.01
	14181-00-0	0.01	mg/L	-0.01	-0.10	0.02	-0.01	-0.01

 Page
 : 4 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW1D	MW1S	MW3	MW4	MW5
		Sampli	ng date / time	22-Aug-2022 11:10	22-Aug-2022 11:30	22-Aug-2022 10:50	22-Aug-2022 08:45	22-Aug-2022 10:35
Compound	CAS Number	LOR	Unit	EW2203826-001	EW2203826-002	EW2203826-003	EW2203826-004	EW2203826-005
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.10	0.02	<0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.6	1.4	0.4	0.7
EK062G: Total Nitrogen as N (TKN + NC	x) by Discrete Ar	alyser						
^ Total Nitrogen as N		0.1	mg/L	0.9	0.6	1.4	0.4	0.7
EK067G: Total Phosphorus as P by Disc	crete Analyser							
Total Phosphorus as P		0.01	mg/L	0.13	0.18	0.38	0.63	0.07
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	4.29	0.52	4.41	3.87	3.19
Ø Total Cations		0.01	meq/L	3.97	0.76	4.14	3.53	3.30
ø Ionic Balance		0.01	%	3.85		3.13	4.59	1.59
EP002: Dissolved Organic Carbon (DOC	;)							
Dissolved Organic Carbon		1	mg/L	5	17	10	7	5
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	0.25	0.18	0.30	0.38	0.34
QWI-EN 67.11 Sampling of Groundwate	rs							
Depth		0.01	m	2.15	2.21	2.49	2.85	3.12

 Page
 : 5 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

		Sample ID	MW6D	MW6S	MW7D	MW7S	MW9
	Sampli	ng date / time	22-Aug-2022 09:30	22-Aug-2022 09:10	22-Aug-2022 10:15	22-Aug-2022 10:00	22-Aug-2022 14:00
CAS Number	LOR	Unit	EW2203826-006	EW2203826-007	EW2203826-008	EW2203826-009	EW2203826-010
			Result	Result	Result	Result	Result
	0.1	pH Unit	6.8	6.1	7.0	6.4	7.2
	1	μS/cm	1560	445	925	345	1320
180 ± 5 °C							
	10	mg/L	730	326	538	242	810
	0.1	mV	-184	-137	-163	21.5	83.3
DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
3812-32-6	1	mg/L	<1	<1	<1	<1	<1
71-52-3	1	mg/L	666	142	292	102	192
	1	mg/L	666	142	292	102	192
4 2- by DA							
14808-79-8	1	mg/L	33	28	28	18	<10
er							
	1	mg/L	72	25	93	34	350
7440-70-2	1	mg/L	144	19	102	27	19
7439-95-4	1	mg/L	22	29	10	5	24
7440-23-5	1	mg/L	55	26	46	36	204
7440-09-7	1	mg/L	46	1	9	<1	10
7439-96-5	0.001	mg/L	0.119	0.193	0.064	0.006	0.002
7439-89-6	0.05	mg/L	11.4	5.17	9.10	0.42	1.43
16984-48-8	0.1	mg/L	0.5	0.2	0.2	<0.1	0.4
nalvser							
	0.01	mg/L	41.8	0.01	5.20	0.01	<0.01
					<u> </u>		
	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.10
							1
	0.01	mg/L	0.01	0.03	<0.01	0.02	<0.10
	DMO-210-001 3812-32-6 71-52-3 16887-00-6 7440-70-2 7439-95-4 7440-09-7 7439-96-5 7439-89-6	CAS Number LOR 0.1 1 t 180 ± 5 °C 10 0.1 DMO-210-001 1 3812-32-6 1 71-52-3 1 1 42- by DA 14808-79-8 1 16887-00-6 1 7440-70-2 1 7439-95-4 1 7440-23-5 1 7440-09-7 1 7439-96-5 0.001 7439-89-6 0.05 16984-48-8 0.1 nalyser 7664-41-7 0.01 lyser	Sampling date / time CAS Number LOR Unit 0.1 pH Unit 1 μS/cm t 180 ± 5 °C 10 mg/L 0.1 mV DMO-210-001 1 mg/L 3812-32-6 1 mg/L 71-52-3 1 mg/L 1 mg/L mg/L 142- by DA 1 mg/L 14808-79-8 1 mg/L 16887-00-6 1 mg/L 7440-70-2 1 mg/L 7440-23-5 1 mg/L 7439-96-4 1 mg/L 7439-89-6 0.05 mg/L 16984-48-8 0.1 mg/L 16984-48-8 0.1 mg/L 14797-65-0 0.01 mg/L 1lyser 14797-65-0 0.01 mg/L	Sampling date / time 22-Aug-2022 09:30 CAS Number LOR Unit EW2203826-006 Result 1 μS/cm 1560 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm 1 μS/cm	Sampling date / time 22-Aug-2022 09:30 22-Aug-2022 09:10 CAS Number LOR Unit EW2203826-006 EW2203826-007 Result Result Result 0.1 pH Unit 6.8 6.1 1 μS/cm 1560 445 £180 ± 5 °C 10 mg/L 730 326 10.1 mV -184 -137 DMO-210-001 1 mg/L <1	Sampling date / time 22-Aug-2022 09:30 22-Aug-2022 10:15	Sampling date / time 22-Aug-2022 09:30 22-Aug-2022 10:15 22-Aug-2022 10:00

 Page
 : 6 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW6D	MW6S	MW7D	MW7S	MW9
		Sampli	ng date / time	22-Aug-2022 09:30	22-Aug-2022 09:10	22-Aug-2022 10:15	22-Aug-2022 10:00	22-Aug-2022 14:00
Compound	CAS Number	LOR	Unit	EW2203826-006	EW2203826-007	EW2203826-008	EW2203826-009	EW2203826-010
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NC	0x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	0.03	<0.01	0.02	<0.10
EK061G: Total Kjeldahl Nitrogen By D	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	39.3	2.1	5.4	0.8	4.6
EK062G: Total Nitrogen as N (TKN + I	NOx) by Discrete Ar	nalyser						
^ Total Nitrogen as N		0.1	mg/L	39.3	2.1	5.4	0.8	4.6
EK067G: Total Phosphorus as P by D	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	3.13	0.07	0.77	0.10	0.42
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	16.0	4.12	9.04	3.37	13.7
ø Total Cations		0.01	meq/L	15.6		8.52		
ø Total Cations		0.01	meq/L		4.49		3.32	12.0
ø Ionic Balance		0.01	%	1.35		3.02		
ø Ionic Balance		0.01	%		4.25		0.70	6.43
EP002: Dissolved Organic Carbon (D	OC)							
Dissolved Organic Carbon		1	mg/L	24	40	7	24	62
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	0.33	0.93	0.35	1.71	5.27
QWI-EN 67.11 Sampling of Groundwa	nters							
Depth		0.01	m	3.93	3.68	3.68	3.50	1.60

 Page
 : 7 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW11	MW12	MW13	MW14
		Sampl	ing date / time	22-Aug-2022 13:50	22-Aug-2022 14:10	22-Aug-2022 12:25	22-Aug-2022 12:05	22-Aug-2022 11:45
Compound	CAS Number	LOR	Unit	EW2203826-011	EW2203826-012	EW2203826-013	EW2203826-014	EW2203826-015
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.5	6.6	7.5	7.5	7.1
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	199	190	1270	783	2200
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	175	198	632	386	1040
EA075FD: Field Redox Potential								
Redox Potential		0.1	mV	121	28.7	-151	170	-136
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	38	63	379	311	450
Total Alkalinity as CaCO3		1	mg/L	38	63	379	311	450
ED041G: Sulfate (Turbidimetric) as So	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	<10	22	21	35
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	35	16	158	48	363
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	1	17	67	49	73
Magnesium	7439-95-4	1	mg/L	2	4	30	27	56
Sodium	7440-23-5	1	mg/L	37	22	96	38	205
Potassium	7440-09-7	1	mg/L	3	<1	33	22	47
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.001	0.013	0.015	0.011	0.038
Iron	7439-89-6	0.05	mg/L	0.52	0.24	4.07	2.06	3.61
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	<0.1	0.2	0.2	0.3
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.04	19.9	12.2	31.9
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.10	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete An			J					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.10	0.02	<0.01	<0.01
	14131-00-0	5.01	∌, ⊏	0.01	5.10	0.02	5.51	5.01

 Page
 : 8 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW11	MW12	MW13	MW14
		Sampli	ng date / time	22-Aug-2022 13:50	22-Aug-2022 14:10	22-Aug-2022 12:25	22-Aug-2022 12:05	22-Aug-2022 11:45
Compound	CAS Number	LOR	Unit	EW2203826-011	EW2203826-012	EW2203826-013	EW2203826-014	EW2203826-015
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NOx)	y Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.10	0.02	<0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By Discr	ete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	26.8	1.8	21.4	13.9	32.3
EK062G: Total Nitrogen as N (TKN + NOx	by Discrete Ar	alyser						
^ Total Nitrogen as N		0.1	mg/L	26.8	1.8	21.4	13.9	32.3
EK067G: Total Phosphorus as P by Discre	ete Analyser							
Total Phosphorus as P		0.01	mg/L	2.60	1.12	0.14	0.21	0.17
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L		1.84			
ø Total Anions		0.01	meq/L	1.75		12.5	8.00	20.0
ø Total Cations		0.01	meq/L				7.88	
Ø Total Cations		0.01	meq/L	1.90	2.13	10.8		18.4
Ø Ionic Balance		0.01	%				0.85	
ø Ionic Balance		0.01	%			7.10		4.14
EP002: Dissolved Organic Carbon (DOC)								
Dissolved Organic Carbon		1	mg/L	24	43	24	9	17
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	6.80	4.56	0.31	0.33	0.19
QWI-EN 67.11 Sampling of Groundwaters								
Depth		0.01	m	2.00	1.99	1.85	2.09	1.60

 Page
 : 9 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COUNCIL

 Project
 : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ML-1	ML-2	ML-3	ML-4	ML-5
		Sampli	ing date / time	22-Aug-2022 13:10	22-Aug-2022 14:20	22-Aug-2022 13:25	22-Aug-2022 13:20	22-Aug-2022 13:30
Compound	CAS Number	LOR	Unit	EW2203826-016	EW2203826-017	EW2203826-018	EW2203826-019	EW2203826-020
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.6	7.3	7.6	7.6	7.3
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	910	7180	880	870	1120
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	533	4190	542	520	660
EA075FD: Field Redox Potential								
Redox Potential		0.1	mV	51.4	95.4	54.1	54.1	76.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	105	135	116	116	154
Total Alkalinity as CaCO3		1	mg/L	105	135	116	116	154
ED093T: Total Major Cations								
Calcium	7440-70-2	1	mg/L	48	84	48	47	54
Magnesium	7439-95-4	1	mg/L	18	136	17	17	21
Sodium	7440-23-5	1	mg/L	99	1080	97	94	121
Potassium	7440-09-7	1	mg/L	6	45	6	6	9
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.057	0.036	0.061	0.099	0.054
Iron	7439-89-6	0.05	mg/L	3.04	2.13	3.22	3.61	3.16
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.31	1.48	0.29	0.35	2.18
EK057G: Nitrite as N by Discrete Ana	alvser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.02	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete An								•
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.05	0.01	0.01	0.03
EK059G: Nitrite plus Nitrate as N (NC	(x) by Discrete Ana	lvser _						
Nitrite + Nitrate as N		0.01	mg/L	0.02	0.07	0.01	0.01	0.03
EK061G: Total Kjeldahl Nitrogen By D	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	2.7	1.0	1.1	2.9
EK062G: Total Nitrogen as N (TKN + I	NOv) by Discrete An							
^ Total Nitrogen as N	NOX) by Discrete An	0.1	mg/L	0.9	2.8	1.0	1.1	2.9
. C.ai Hillogon ao H		U. 1	9/ _	V.U	2.7	1.4		2.0

 Page
 : 10 of 11

 Work Order
 : EW2203826

 Client
 : KIAMA COU

Client : KIAMA COUNCIL
Project : Gerroa Landfill

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ML-1	ML-2	ML-3	ML-4	ML-5
		Samplii	ng date / time	22-Aug-2022 13:10	22-Aug-2022 14:20	22-Aug-2022 13:25	22-Aug-2022 13:20	22-Aug-2022 13:30
Compound	CAS Number	LOR	Unit	EW2203826-016	EW2203826-017	EW2203826-018	EW2203826-019	EW2203826-020
				Result	Result	Result	Result	Result
EK067G: Total Phosphorus as P b	y Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.04	0.12	0.05	0.06	0.06
EP025FD: Field Dissolved Oxyger								
Dissolved Oxygen		0.01	mg/L	4.42	6.95	4.14	4.43	4.40

Page : 11 of 11 Work Order : EW2203826

Client : KIAMA COUNCIL
Project : Gerroa Landfill

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BLANK	 	
		Sampli	ng date / time	22-Aug-2022 08:30	 	
Compound	CAS Number	LOR	Unit	EW2203826-021	 	
				Result	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	<1	 	
Magnesium	7439-95-4	1	mg/L	<1	 	
Sodium	7440-23-5	1	mg/L	<1	 	
Potassium	7440-09-7	1	mg/L	<1	 	
EG020F: Dissolved Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	<0.001	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED037P: Alkalinity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EP002: Dissolved Organic Carbon (DOC)
(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) ED093F: Dissolved Major Cations

(WATER) EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser

(WATER) EK061G: Total Kjeldahl Nitrogen By Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EK067G: Total Phosphorus as P by Discrete Analyser (WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 °C

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser (WATER) EG020T: Total Metals by ICP-MS (WATER) ED093T: Total Major Cations